精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|x|,在①y=
x2
,②y=(
x
)2
,③y=
x2
x
,④y=
x
-x
x>0;
x<0.
中与f(x)为同一函数的函数的为
 
.(填序号)
考点:判断两个函数是否为同一函数
专题:函数的性质及应用
分析:判断函数的定义域相同,对应关系也相同,这样的两个函数是同一函数.
解答: 解:∵f(x)=|x|,x∈R;
∴①y=
x2
=|x|,x∈R,定义域相同,对应关系也相同,∴是同一函数;
②y=(
x
)
2
=x,(x≥0),定义域不不同,∴不是同一函数;
③y=
x2
x
=x,(x≠0),定义域不同,∴不是同一函数;
④y=
x,x>0
-x,x<0
=|x|,(x≠0),定义域不同,∴不是同一函数;
综上,与f(x)是同一函数的是①.
故答案为:①.
点评:本题考查了判断两个函数是否为同一函数的问题,解题时应判断它们的定义域是否相同,对应关系是否也相同,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义域为R的偶函数f(x)满足对任意x∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时,f(x)=-2x2+12x-18,若函数y=f(x)-loga(x+1)在(0,+∞)上至少有三个零点,则a的取值范围是(  )
A、(0,
3
3
B、(0,
2
2
C、(0,
5
5
D、(0,
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=x3的一条切线l与直线x+4y-8=0垂直,则l的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e2x2-1,若f[cos(
π
2
+θ)]=1,则θ的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域是一切实数的函数y=f(x),其图象是连续不断的,且存在常数λ(λ∈R)使得f(x+λ)+λf(x)=0对任意实数x都成立,则称f(x)是一个“λ-函数”. 有下列关于“λ-函数”的结论:
①f(x)=0是常数函数中唯一一个“λ-函数”;
②“
1
2
-函数”至少有一个零点;
③f(x)=x2是一个“λ-函数”;
④f(x)=ex是一个“λ-函数”.
其中正确结论是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2+2,g(x)=4x-1的定义域都是集合A,函数f(x)和g(x)的值域分别为S和T.
(1)若A=[1,2],求S∩T;
(2)若A=[0,m],且S⊆T,求实数m的取值范围;
(3)若对于A中的每一个x值,都有f(x)=g(x),求集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
x-1
的定义域为集合M,函数g(x)=|3-x|-|x-1|的值域为N.
(1)求M,N;
(2)求M∪N,M∩∁RN.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,向量
a
-
b
等于 (  )
A、-2
e1
-4
e2
B、-4
e1
-2
e2
C、
e1
-3
e2
D、-
e1
+3
e2

查看答案和解析>>

科目:高中数学 来源: 题型:

在直四棱柱ABCD-A1B1C1D1中,底面ABCD是边长为1的正方形,AA1=2,M、N分别是A1B1、A1D1中点,则三棱锥A-BMN的体积为
 

查看答案和解析>>

同步练习册答案