精英家教网 > 高中数学 > 题目详情
若函数f(x)=
x
ax+b
(a≠0),f(2)=1,又方程f(x)=x有唯一解,求f(x)的解析式.
考点:根的存在性及根的个数判断
专题:函数的性质及应用
分析:将问题转化为ax2+(1-2a)x=0有唯一解,根据根的判别式△=0,求出a的值,从而求出f(x)的表达式.
解答: 解:由f(2)=1得
2
2a+b
=1,即b=2-2a,
故f(x)=
x
ax+2-2a

又f(x)=x有唯一解,即
x
ax+2-2a
=x有唯一解,
即ax2+(1-2a)x=0有唯一解,
而a≠0,故△=(1-2a)2-4a•0=0,
解得:a=
1
2

故f(x)=
2x
x+2
点评:本题考查了求函数解析式的问题,考查了一元二次方程根的判别式,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

三个数a=lnπ,b=log52,c=e
1
2
之间的大小关系是(  )
A、c<b<aB、c<ab
C、a<b<cD、b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若a2+b2-c2=-ab,那么角∠C=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求值:lg50+lg2lg5+lg22.

查看答案和解析>>

科目:高中数学 来源: 题型:

用十字相乘法分解因式:ax2+(1-4a)x-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x-y≤0
x+y-2≤0
2x+y≥0
,则z=-x2-y的最小值是(  )
A、-8B、-2C、-1D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=(
1
2
|x|,定义函数:g(x)=
f(x),f(x)≤
1
2
1
2
,f(x)>
1
2

(1)画出函数g(x)的图象并写出其单调区间;
(2)设t∈R,若关于t的方程g(t)=-a2+4a-3有解,求实数a的取值范围;
(3)若m∈R,且f(mx-1)>(
1
2
x对x∈[2,3]恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+2x+c,(a,c∈N*)满足①f(1)=5;②6<f(2)<11.
(1)求函数f(x)的解析表达式;
(2)若对任意x∈[1,2],都有f(x)-2mx≥1成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2-
1
2
lnx+1在(k-1,k+1)内不是单调函数,则实数k的取值范围是
 

查看答案和解析>>

同步练习册答案