精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=Asin(wx+φ)+B(A>0,w>),|φ|<$\frac{π}{2}$) 的部分图象如图所示:
(1)求f(x)的解析式和对称中心坐标;
(2)将f(x)的图象向左平移$\frac{π}{6}$个单位,再将横坐标伸长到原来的2倍,纵坐标不变,最后将图象向上平移1个单位,得到函数g(x)的图象,求函数y=g(x)在x∈[0,$\frac{7π}{6}$]上的最大值和最小值.

分析 (1)由图象可求A,B,T,利用周期公式可得ω,由图象及五点法作图可求φ,即可得解f(x)的函数解析式,令2x+$\frac{π}{3}$=kπ,k∈Z,解得f(x)的对称中心的坐标.
(2)由已知的图象变换过程可得g(x)=2sin(x+$\frac{2π}{3}$),结合x的范围,可求x+$\frac{2π}{3}$∈[$\frac{2π}{3}$,$\frac{11π}{6}$],利用正弦函数的图象和性质即可计算得解.

解答 (本题满分为12分)
解:(1)由图象可知$\left\{\begin{array}{l}{A+B=1}\\{-A+B=-3}\end{array}\right.$,可得:A=2,B=-1,…(2分)
又由于$\frac{T}{2}$=$\frac{7π}{12}-\frac{π}{12}$,可得:T=π,
所以$ω=\frac{2π}{T}$=2,…(3分)
由图象及五点法作图可知:2×$\frac{π}{12}$+φ=$\frac{π}{2}$,
所以φ=$\frac{π}{3}$,
所以f(x)=2sin(2x+$\frac{π}{3}$)-1.…(4分)
令2x+$\frac{π}{3}$=kπ,k∈Z,得x=$\frac{kπ}{2}$-$\frac{π}{6}$,k∈Z,
所以f(x)的对称中心的坐标为($\frac{kπ}{2}$-$\frac{π}{6}$,-1),k∈Z.…(6分)
(2)由已知的图象变换过程可得:g(x)=2sin(x+$\frac{2π}{3}$),…(8分)
因为x∈[0,$\frac{7π}{6}$],所以x+$\frac{2π}{3}$∈[$\frac{2π}{3}$,$\frac{11π}{6}$],…(10分)
所以当x+$\frac{2π}{3}$=$\frac{3π}{2}$,得x=$\frac{5π}{6}$时,g(x)取得最小值g($\frac{5π}{6}$)=-2,…(11分)
当x+$\frac{2π}{3}$=$\frac{2π}{3}$,即x=0时,g(x)取得最大值g(0)=$\sqrt{3}$.…(12分)

点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,三角函数平移变换的规律,考查了正弦函数的图象和性质的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设随机变量X的分布列为$P(X=i)=a•{({\frac{2}{3}})^i}i=1,2,3$,则a的值为(  )
A.$\frac{17}{38}$B.$\frac{27}{38}$C.$\frac{17}{19}$D.$\frac{27}{19}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,桌面上放置了红、黄、蓝三个不同颜色的杯子,杯子口朝上,我们做蒙眼睛翻杯子(杯口朝上的翻为杯口朝下,杯口朝下的翻为杯口朝上)的游戏.
(1)随机翻一个杯子,求翻到黄色杯子的概率;
(2)随机翻一个杯子,接着从这三个杯子中再随机翻一个,请利用树状图求出此时恰好有一个杯口朝上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.有下列关系:①人的年龄与他(她)拥有的财富之间的关系; ②曲线上的点与该点的坐标之间的关系; ③苹果的产量与气候之间的关系;④森林中的同一种树木,其横断面直径与高度之间的关系,其中是相关关系的为①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=ex-ax2-x-1(a∈R)恰有两个极值点x1,x2(其中x1<x2),且f(x2)=0,则a的取值范围是(  )
A.$(-∞,\frac{1}{2})$B.(0,1)C.$(0,\frac{1}{2})$D.$(\frac{1}{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知x>1,y>1,且$\frac{1}{4}$lnx,$\frac{1}{4}$,lny成等比数列,则xy(  )
A.有最大值eB.有最大值 $\sqrt{e}$C.有最小值eD.有最小值 $\sqrt{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系中,直线L的参数方程为$\left\{\begin{array}{l}{x=3-tcos\frac{3π}{4}}\\{y=\sqrt{5}+tsin\frac{3π}{4}}\end{array}\right.$(t为参数).在以原点 O为极点,x轴正半轴为极轴的极坐标中,圆C的方程为$ρ=2\sqrt{5}sinθ$.
(Ⅰ)写出直线L的倾斜角α和圆C的直角坐标方程;
(Ⅱ)若点 P坐标为$({3,\sqrt{5}})$,圆C与直线L交于 A,B两点,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,已知⊙O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是⊙O的直径
(1)求证:AC•BC=AD•AE;
(2)过点C作⊙O的切线交BA的延长线于点F,若BC=5,CF=6,求AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.右边程序框图的算法思路来源于我国古代数学名著《数学九章》中的“秦九韶算法”求多项式的值,执行如图所示的程序框图,若输入a0=1,a1=1,a2=2,a3=3,a4=4,a5=5,x0=-1,则输出y的值为(  )
A.15B.3C.-3D.-15

查看答案和解析>>

同步练习册答案