| A. | $(-∞,\frac{1}{2})$ | B. | (0,1) | C. | $(0,\frac{1}{2})$ | D. | $(\frac{1}{2},+∞)$ |
分析 根据题意,对函数f(x)求导数,得出导数f′(x)=0有两不等实根,转化为两函数有两个交点的问题,结合图象即可得出a的取值范围.
解答
解:令g(x)=f′(x)=ex-2ax-1,则方程ex-2ax-1=0有两不等实根,
即直线y=2ax+1与函数y=ex的图象有两个交点,
易得其中一个交点为(0,1),而f(0)=0,∴x1<0,x2=0,
当直线y=2ax+1与函数y=ex的图象相切于点(0,1)时,2a=e0=1,即$a=\frac{1}{2}$,
故由图象知,a的取值范围是$(0,\frac{1}{2})$,
故选:C.
点评 本题考查了利用导数研究函数的单调性与极值的应用问题,也考查了转化思想与数形结合的应用问题,是综合性题目.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com