精英家教网 > 高中数学 > 题目详情
9.右边程序框图的算法思路来源于我国古代数学名著《数学九章》中的“秦九韶算法”求多项式的值,执行如图所示的程序框图,若输入a0=1,a1=1,a2=2,a3=3,a4=4,a5=5,x0=-1,则输出y的值为(  )
A.15B.3C.-3D.-15

分析 由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量v的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

解答 解:模拟程序的运行,可得
a0=1,a1=1,a2=2,a3=3,a4=4,a5=5,x0=-1,
n=1,v=5
满足条件n≤5,执行循环体,v=-1,n=2
满足条件n≤5,执行循环体,v=4,n=3
满足条件n≤5,执行循环体,v=-2,n=4
满足条件n≤5,执行循环体,v=4,n=5
满足条件n≤5,执行循环体,v=-3,n=6
不满足条件n≤5,退出循环,输出v的值为-3.
故选:C.

点评 本题考查程序框图,考查学生的计算能力,正确模拟运行程序是关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=Asin(wx+φ)+B(A>0,w>),|φ|<$\frac{π}{2}$) 的部分图象如图所示:
(1)求f(x)的解析式和对称中心坐标;
(2)将f(x)的图象向左平移$\frac{π}{6}$个单位,再将横坐标伸长到原来的2倍,纵坐标不变,最后将图象向上平移1个单位,得到函数g(x)的图象,求函数y=g(x)在x∈[0,$\frac{7π}{6}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如果两条直线a和b没有公共点,那么a和b(  )
A.共面B.平行C.异面D.平行或异面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,三棱锥PABC中,PC⊥平面ABC,PC=3,∠ACB=$\frac{π}{2}$,AC=2.D,E分别为线段AB,BC上的点,且CD=DE=$\sqrt{2}$,CE=2EB=2.
证明:(1)求三棱锥PABC的体积;
(2)证明DE⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若[x]表示不超过x的最大整数,则图中的程序框图运行之后输出的结果为(  )
A.400B.600C.10D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,一个空间几何体的正视图、侧视图是周长为16的一个内角为60°的菱形,俯视图是圆及其圆心,那么这个几何体的表面积为(  )
A.B.12πC.16πD.20π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.有4支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿.从这4支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=ln\sqrt{1+2x}+mx$.
(Ⅰ)若f(x)为定义域上的单调增函数,求实数m的取值范围;
(Ⅱ)当m=-1时,求函数f(x)的最大值;
(Ⅲ)当m=1时,且1≥a>b≥0,证明:$\frac{4}{3}<\frac{f(a)-f(b)}{a-b}<2$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,AB是圆O的直径,弦BD,CA的延长线相交于点E,EF垂直BA的延长线于点F.求证:AB2=BE•BD-AE•AC.

查看答案和解析>>

同步练习册答案