精英家教网 > 高中数学 > 题目详情
8.如图,已知⊙O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是⊙O的直径
(1)求证:AC•BC=AD•AE;
(2)过点C作⊙O的切线交BA的延长线于点F,若BC=5,CF=6,求AC的长.

分析 (1)如图所示,连接BE.由于AE是⊙O的直径,可得∠ABE=90°.利用∠E与∠ACB都是$\widehat{AB}$所对的圆周角,可得∠E=∠ACB.进而得到△ABE∽△ADC,即可得到.
(II)利用切割线定理可得CF2=AF•BF,可得BF.再利用△AFC∽△CFB,可得$\frac{AF}{FC}$=$\frac{AC}{BC}$,即可得出.

解答 (1)证明:如图所示,连接BE.
∵AE是⊙O的直径,∴∠ABE=90°.
又∠E与∠ACB都是$\widehat{AB}$所对的圆周角,∴∠E=∠ACB.
∵AD⊥BC,∠ADC=90°.
∴△ABE∽△ADC,∴$\frac{AB}{AD}$=$\frac{AE}{AC}$,∴AB•AC=AD•AE.
又AB=BC,∴BC•AC=AD•AE.
(2)∵CF是⊙O的切线,∴CF2=AF•BF,
∵AF=2,CF=4,∴42=2BF,解得BF=8.
∴AB=BF-AF=6.∵∠ACF=∠FBC,∠CFB=∠AFC,∴△AFC∽△CFB,
∴$\frac{AF}{FC}$=$\frac{AC}{BC}$,∴$AC=\frac{AF•BC}{CF}$=3.

点评 本题考查了圆的性质、三角形相似判定与性质、切割线定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知圆C的圆心位于直线x+y=0上,且圆C与直线x-y=0和直线x-y-4=0均相切,则圆的方程为(  )
A.(x+1)2+(y-1)2=2B.(x-1)2+(y+1)2=2C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=Asin(wx+φ)+B(A>0,w>),|φ|<$\frac{π}{2}$) 的部分图象如图所示:
(1)求f(x)的解析式和对称中心坐标;
(2)将f(x)的图象向左平移$\frac{π}{6}$个单位,再将横坐标伸长到原来的2倍,纵坐标不变,最后将图象向上平移1个单位,得到函数g(x)的图象,求函数y=g(x)在x∈[0,$\frac{7π}{6}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知点A(2,-3),B(-3,-2)直线L过点P(1,1)且与线段AB相交,直线L的倾斜角α的取值范围是[arctan$\frac{3}{4}$,π-arctan4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=ex-ax有两个零点x1<x2,则下列说法正确的个数是(  )
①a>e;②x1+x2>2;③x1x2>1;④函数f(x)有极小值点x0,x1+x2<2x0
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若函数f(x)在区间(-1,2)上是减函数,求使f(1+x)<f(2x-1)成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如果两条直线a和b没有公共点,那么a和b(  )
A.共面B.平行C.异面D.平行或异面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,三棱锥PABC中,PC⊥平面ABC,PC=3,∠ACB=$\frac{π}{2}$,AC=2.D,E分别为线段AB,BC上的点,且CD=DE=$\sqrt{2}$,CE=2EB=2.
证明:(1)求三棱锥PABC的体积;
(2)证明DE⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=ln\sqrt{1+2x}+mx$.
(Ⅰ)若f(x)为定义域上的单调增函数,求实数m的取值范围;
(Ⅱ)当m=-1时,求函数f(x)的最大值;
(Ⅲ)当m=1时,且1≥a>b≥0,证明:$\frac{4}{3}<\frac{f(a)-f(b)}{a-b}<2$.

查看答案和解析>>

同步练习册答案