精英家教网 > 高中数学 > 题目详情
18.已知圆C的圆心位于直线x+y=0上,且圆C与直线x-y=0和直线x-y-4=0均相切,则圆的方程为(  )
A.(x+1)2+(y-1)2=2B.(x-1)2+(y+1)2=2C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2

分析 根据圆心位于直线x+y=0上,设出圆心(a,-a),利用圆心到直线x-y=0和直线x-y-4=0等于半径,即可求解.

解答 解圆C的圆心位于直线x+y=0上,
设圆心(a,-a),
圆心到直线x-y=0的距离为$\frac{|2a|}{\sqrt{2}}$,
圆心到直线x-y-4=0的距离为$\frac{|2a-4|}{\sqrt{2}}$.
∴$\frac{|2a|}{\sqrt{2}}$=$\frac{|2a-4|}{\sqrt{2}}$,解得a=1.
∴r=$\frac{|2a|}{\sqrt{2}}$=$\sqrt{2}$,
∴圆的标准方程为(x-1)2+(y+1)2=2,
故选:B.

点评 本题主要考查直线和圆的位置关系的判断,根据直线和圆相切的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2+$\frac{4}{{x}^{2}}$.
(1)求证:f(x)是偶函数;
(2)判断函数f(x)在(0,$\sqrt{2}$)和($\sqrt{2}$,+∞)上的单调性并用定义法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设随机变量X的分布列为$P(X=i)=a•{({\frac{2}{3}})^i}i=1,2,3$,则a的值为(  )
A.$\frac{17}{38}$B.$\frac{27}{38}$C.$\frac{17}{19}$D.$\frac{27}{19}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某中学为了解2017届高三学生的性别和喜爱游泳是否有关,对100名高三学生进行了问卷调查,得到如下列联表:
喜欢游泳不喜欢游泳合计
男生10
女生20
合计
已知在这100人中随机抽取1人,抽到喜欢游泳的学生的概率为$\frac{3}{5}$.
(Ⅰ)请将上述列联表补充完整;
(Ⅱ)判断是否有99.9%的把握认为喜欢游泳与性别有关?
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
p(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcosθ=a(a>0),Q为l上一点,以OQ为边作等边三角形OPQ,且O、P、Q三点按逆时针方向排列.
(Ⅰ)当点Q在l上运动时,求点P运动轨迹的直角坐标方程;
(Ⅱ)若曲线C:x2+y2=a2,经过伸缩变换$\left\{\begin{array}{l}{x′=2x}\\{y′=y}\end{array}\right.$得到曲线C′,试判断点P的轨迹与曲线C′是否有交点,如果有,请求出交点的直角坐标,没有则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2+ax+1,g(x)=ex(其中e为自然对数的底数).
(Ⅰ)若a=1,求函数y=f(x)•g(x)在区间[-2,0]上的最大值;
(Ⅱ)若a=1,关于x的方程f(x)=k•g(x)有且仅有一个根,求实数k的取值范围;
(Ⅲ)若对任意的x1,x2∈[$\frac{1}{2}$,2]且x1≠x2,不等式|f(x1)-f(x2)|<|g(x1)-g(x2)|均成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,桌面上放置了红、黄、蓝三个不同颜色的杯子,杯子口朝上,我们做蒙眼睛翻杯子(杯口朝上的翻为杯口朝下,杯口朝下的翻为杯口朝上)的游戏.
(1)随机翻一个杯子,求翻到黄色杯子的概率;
(2)随机翻一个杯子,接着从这三个杯子中再随机翻一个,请利用树状图求出此时恰好有一个杯口朝上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.有下列关系:①人的年龄与他(她)拥有的财富之间的关系; ②曲线上的点与该点的坐标之间的关系; ③苹果的产量与气候之间的关系;④森林中的同一种树木,其横断面直径与高度之间的关系,其中是相关关系的为①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,已知⊙O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是⊙O的直径
(1)求证:AC•BC=AD•AE;
(2)过点C作⊙O的切线交BA的延长线于点F,若BC=5,CF=6,求AC的长.

查看答案和解析>>

同步练习册答案