精英家教网 > 高中数学 > 题目详情
13.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的两条渐近线与圆:(x-3)2+y2=1都相切,则双曲线C的离心率是$\frac{3\sqrt{2}}{4}$.

分析 求得双曲线的渐近线方程,圆的圆心和半径,由直线和圆相切的条件:d=r,可得a2=8b2,再由a,b,c的关系和离心率公式计算即可得到所求值.

解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的两条渐近线方程为y=±$\frac{b}{a}$x,
圆:(x-3)2+y2=1的圆心为(3,0),半径为1,
由直线和圆相切的条件可得,d=$\frac{3b}{\sqrt{{a}^{2}+{b}^{2}}}$=1,
化为a2=8b2
由b2=c2-a2,可得8c2=9a2
即有e2=$\frac{{c}^{2}}{{a}^{2}}$=$\frac{9}{8}$,
可得e=$\frac{3\sqrt{2}}{4}$.
故答案为:$\frac{3\sqrt{2}}{4}$.

点评 本题考查双曲线的离心率的求法,注意运用直线和圆相切的条件:d=r,考查点到直线的距离公式的运用,运算化简能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.根据如图所示的程序语句,若输入的x值为3,则输出的y值为(  )
A.2B.3C.6D.27

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合P={0,1,2},Q={y|y=3x},则P∩Q的子集的个数是(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,已知F1,F2是双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的上下焦点,过F2点作以F1为圆心,|OF1|为半径的圆的切线,P为切点,若切线段PF2被一条渐近线平分,则双曲线的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知复数z满足(1-2i)z=|1+2i|•(1-i),则复数z的虚部为(  )
A.-$\frac{\sqrt{5}}{5}$B.-$\frac{\sqrt{5}}{5}$iC.$\frac{\sqrt{5}}{5}$D.-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知△ABC的内角A,B,C满足sin2A+sin(A-B+C)=sin(C-A-B)+$\frac{1}{2}$,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,给出下列说法:
①bc(b+c)>8②ab(a+b)>16$\sqrt{2}$③6≤abc≤12④12≤abc≤24
其中不正确的是②③④(填出所有符合要求的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.从编号依次为1,2,3….100的个体中,用系统抽样方法抽取5个个体,则抽出的编号可能为(  )
A.5,15,25,35,45B.25,45,65,85,100C.10,30,50,70,90D.23,33,45,53,63

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在正方体ABCD-A1B1C1D1中,O是BD中点,点P在线段B1D1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是(  )
A.[$\frac{{\sqrt{2}}}{3}$,$\frac{{\sqrt{3}}}{3}$]B.[$\frac{1}{3}$,$\frac{1}{2}$]C.[$\frac{{\sqrt{3}}}{4}$,$\frac{{\sqrt{3}}}{3}$]D.[$\frac{1}{4}$,$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系中,点O为坐标原点,A(1,2),B(-3,4).
(Ⅰ)求向量$\overrightarrow{AB}$的坐标及|$\overrightarrow{AB}$|;
(Ⅱ)求向量$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角的余弦值.

查看答案和解析>>

同步练习册答案