精英家教网 > 高中数学 > 题目详情
17.在平面直角坐标系中,点O为坐标原点,A(1,2),B(-3,4).
(Ⅰ)求向量$\overrightarrow{AB}$的坐标及|$\overrightarrow{AB}$|;
(Ⅱ)求向量$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角的余弦值.

分析 (Ⅰ)根据平面向量的坐标表示,写出向量$\overrightarrow{AB}$,求出模长|$\overrightarrow{AB}$|即可;
(Ⅱ)利用平面向量的夹角公式,即可求出向量$\overrightarrow{OA}$与$\overrightarrow{OB}$夹角的余弦值.

解答 解:(Ⅰ)∵A(1,2),B(-3,4),
∴$\overrightarrow{AB}$=(-3-1,4-2)=(-4,2),
|$\overrightarrow{AB}$|=$\sqrt{{(-4)}^{2}{+2}^{2}}$=2$\sqrt{5}$;
(Ⅱ)设向量$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为θ,则:
$\overrightarrow{OA}$•$\overrightarrow{OB}$=1×(-3)+2×4=5,
|$\overrightarrow{OA}$|=$\sqrt{{1}^{2}{+2}^{2}}$=$\sqrt{5}$,|$\overrightarrow{OB}$|=$\sqrt{{(-3)}^{2}{+4}^{2}}$=5,
∴向量$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角的余弦值为:
cosθ=$\frac{\overrightarrow{OA}•\overrightarrow{OB}}{|\overrightarrow{OA}|×|\overrightarrow{OB}|}$=$\frac{5}{\sqrt{5}×5}$=$\frac{\sqrt{5}}{5}$.

点评 本题考查了平面向量的坐标表示与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的两条渐近线与圆:(x-3)2+y2=1都相切,则双曲线C的离心率是$\frac{3\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知cos($\frac{π}{2}$+α)=$\frac{3}{5}$,则sin(π-α)=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=$\frac{1}{2}$AB=2,S为AB上一点,且AB=4AS,M,N分别为PB,BC的中点,则点C到平面MSN的距离为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某几何体的三视图如图所示,则该几何体的面积是$12+2\sqrt{2}+2\sqrt{6}$,体积是4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{log_2}(-x),x<0\\ x-2,x≥0\end{array}\right.$若函数g(x)=a-|f(x)|有四个零点x1,x2,x3,x4,且x1<x2<x3<x4,则x1+x2x3+x2x4的取值范围是[-5,-4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=m-|x-1|-|x+1|.
(1)当m=5时,求不等式f(x)>2的解集;
(2)若二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.直角梯形ABCD中,AB∥DC,AB=3,DC=CB=2,DE⊥AB,垂足为E,若将三角形ADE沿DE向上折起,使得二面角A-DE-C为直二面角,则四棱锥A-BCDE的外接球的体积为$\frac{9}{2}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=2x2-3x+1,g(x)=k•sin(x-$\frac{π}{6}$)(k≠0).
(1)设f(x)的定义域为[0,3],值域为A; g(x)的定义域为[0,3],值域为B,且A⊆B,求实数k的取值范围.
(2)若方程f(sinx)+sinx-a=0在[0,2π)上恰有两个解,求实数a的取值范围.

查看答案和解析>>

同步练习册答案