精英家教网 > 高中数学 > 题目详情
8.计算:
(1)${log_a}2+{log_a}\frac{1}{2}$+${log_2}{3^{\;}}•{log_3}4$(a>0且a≠1)
(2)$2\sqrt{3}×\root{6}{12}×\root{3}{{\frac{3}{2}}}$.

分析 (1)利用对数的运算性质即可得出;
(2)利用指数幂的运算性质即可得出.

解答 解:(1)${log_a}2+{log_a}\frac{1}{2}$+${log_2}{3^{\;}}•{log_3}4$=loga1+$\frac{lg3}{lg2}×\frac{2lg2}{lg3}$=0+2=2.
(2)$2\sqrt{3}×\root{6}{12}×\root{3}{{\frac{3}{2}}}=2×{3^{\frac{1}{2}}}×{12^{\frac{1}{6}}}×{({\frac{3}{2}})^{\frac{1}{3}}}={2^{1+\frac{2}{6}-\frac{1}{3}}}×{3^{\frac{1}{2}+\frac{1}{6}+\frac{1}{3}}}=2×3=6$.

点评 本题考查了指数幂与对数的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若$|\overrightarrow a|=\sqrt{2},|\overrightarrow b|=2$且$(\overrightarrow a-\overrightarrow b)⊥\overrightarrow a$,则$\overrightarrow a$与$\overrightarrow b$的夹角是$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)求z=2x+y的最大值,使式中的x、y满足约束条件$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1.\end{array}\right.$
(2)求z=2x+y的最大值,使式中的x、y满足约束条件$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率与双曲线3x2-y2=3的离心率互为倒数,且过点$(1,\frac{3}{2})$.
(1)求椭圆方程;
(2)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M、N,且线段MN的垂直平分线过定点$P(\frac{1}{5},0)$,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在长方体ABCD-A1B1C1D1的棱AB,AD,AA1,上分别各取异于端点的一点E,F,M,则△MEF是(  )
A.钝角三角形B.锐角三角形C.直角三角形D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.计算:$lg5•{log_{\sqrt{10}}}20+{(lg{2^{\sqrt{2}}})^2}+{e^{lnπ}}$=π+2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设全集为R,集合M={x∈R|x2-4x+3>0},集合N={x∈R|2x>4},则M∪N=(-∞,1)∪(2,+∞);M∩N=(3,+∞);∁R(M∩N)=(-∞,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在(x2+x-2)4的展开式中,各项系数的和是(  )
A.0B.1C.16D.256

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=$\sqrt{2-{x}^{2}}$(-1≤x≤0)的反函数为y=-$\sqrt{2-{x}^{2}}$(1≤x≤$\sqrt{2}$).

查看答案和解析>>

同步练习册答案