精英家教网 > 高中数学 > 题目详情
13.计算:$lg5•{log_{\sqrt{10}}}20+{(lg{2^{\sqrt{2}}})^2}+{e^{lnπ}}$=π+2.

分析 根据对数的运算性质计算即可.

解答 解:$lg5•{log_{\sqrt{10}}}20+{(lg{2^{\sqrt{2}}})^2}+{e^{lnπ}}$,
=lg5•$\frac{lg20}{lg\sqrt{10}}$+2lg22+π,
=2lg5(1+lg2)+2lg22+π,
=2lg5+2lg5•lg2+2lg22+π,
=2lg5+2lg2(lg5+lg2)+π,
=2lg5+2lg2+π,
=2+π,
故答案为:2+π.

点评 本题考查了对数的运算性质,关键掌握其运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知曲线$y=\frac{x^2}{4}-4lnx$的一条切线与直线x+y+1=0垂直,则切点的横坐标为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.“m>0”是“方程$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{m}$=1表示椭圆”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}的通项公式an=2015sin$\frac{nπ}{2}$,则a1+a2+…+a2015=(  )
A.-2015B.2015C.0D.2014

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.计算:
(1)${log_a}2+{log_a}\frac{1}{2}$+${log_2}{3^{\;}}•{log_3}4$(a>0且a≠1)
(2)$2\sqrt{3}×\root{6}{12}×\root{3}{{\frac{3}{2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)已知cosα=-$\frac{4}{5}$,α为第三象限角.求sinα的值;
(2)已知tanθ=3,求$\frac{sinθ+cosθ}{2sinθ+cosθ}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,四个完全相同的长方体排成一个直四棱柱:每个长方体底面为边长1的正方形,侧棱AB长为2,Pi(i=1,2…)是上底面上其余的八个点,则$\overrightarrow{AB}$•$\overrightarrow{A{P}_{i}}$(i=1,2,…)的不同值的个数为(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设二项式(x-$\frac{a}{x}$)6(a≠0)的展开式中x2的系数为A,常数项为B,若B=44,则a=-$\root{3}{\frac{11}{5}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设sin(x+y)=a,sin(x-y)=b,则sinxcosy等于(  )
A.a+bB.a-bC.$\frac{a+b}{2}$D.$\frac{a-b}{2}$

查看答案和解析>>

同步练习册答案