精英家教网 > 高中数学 > 题目详情
1.已知数列{an}的通项公式an=2015sin$\frac{nπ}{2}$,则a1+a2+…+a2015=(  )
A.-2015B.2015C.0D.2014

分析 求出数列的前几项,得到数列{an}是以4为周期的周期数列,由此能求出结果.

解答 解:a1=2015sin$\frac{π}{2}$=2015,
a2=2015sinπ=0,
a3=2015sin$\frac{3π}{2}$=-2015,
a4=2015sin2π=0,

数列{an}是以4为周期的周期数列,
2015=503×4+3,
∴a1+a2+…+a2014=503×0+2015+0-2015=0.
故选:C.

点评 本题考查数列的前2015项和的求法,是基础题,解题时要注意周期数列的性质的灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知正方形ABCD,则以A,B为焦点,且过C,D两点的椭圆的离心率为(  )
A.$\sqrt{2}-1$B.$\sqrt{3}-1$C.$2-\sqrt{2}$D.$3-\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知底面为正三角形,高为4的正三棱柱的外接球的表面积为32π,则该正三棱柱的体积为12$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设函数f(x)是定义在R上以3为周期的奇函数,若f(1)>1,f(2018)=a2-5,则实数a的取值范围是(-2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率与双曲线3x2-y2=3的离心率互为倒数,且过点$(1,\frac{3}{2})$.
(1)求椭圆方程;
(2)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M、N,且线段MN的垂直平分线过定点$P(\frac{1}{5},0)$,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数$f(x)=\frac{{-{{tan}^2}x-tanx}}{1+tanx}$的奇偶性为(  )
A.既奇又偶函数B.偶函数C.非奇非偶函数D.奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.计算:$lg5•{log_{\sqrt{10}}}20+{(lg{2^{\sqrt{2}}})^2}+{e^{lnπ}}$=π+2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.根据下列条件,求抛物线的标准方程.
(1)焦点坐标为(-2,0);
(2)准线方程为y=-1;
(3)过点(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知顶点为原点O,焦点在x轴上的抛物线,其内接△ABC的重心是焦点F,若直线BC的方程为4x+y-20=0.
(1)求抛物线方程;
(2)过抛物线上一动点M作抛物线切线l,又MN⊥l且交抛物线于另一点N,ME(E在M的右侧)平行于x轴,若∠FMN=λ∠NME,求λ的值.

查看答案和解析>>

同步练习册答案