¸ø¶¨Ò»¸öÊýÁÐ{an}£¬ÔÚÕâ¸öÊýÁÐÀÈÎÈ¡m£¨m¡Ý3£¬m¡ÊN*£©Ï²¢ÇÒ²»¸Ä±äËüÃÇÔÚÊýÁÐ{an}ÖеÄÏȺó´ÎÐò£¬µÃµ½µÄÊýÁÐ{an}µÄÒ»¸öm½××ÓÊýÁУ®
ÒÑÖªÊýÁÐ{an}µÄͨÏʽΪan=
1
n+a
£¨n¡ÊN*£¬aΪ³£Êý£©£¬µÈ²îÊýÁÐa2£¬a3£¬a6ÊÇÊýÁÐ{an}µÄÒ»¸ö3×Ó½×ÊýÁУ®
£¨1£©ÇóaµÄÖµ£»
£¨2£©µÈ²îÊýÁÐb1£¬b2£¬¡­£¬bmÊÇ{an}µÄÒ»¸öm£¨m¡Ý3£¬m¡ÊN*£©½××ÓÊýÁУ¬ÇÒb1=
1
k
£¨kΪ³£Êý£¬k¡ÊN*£¬k¡Ý2£©£¬ÇóÖ¤£ºm¡Ük+1
£¨3£©µÈ±ÈÊýÁÐc1£¬c2£¬¡­£¬cmÊÇ{an}µÄÒ»¸öm£¨m¡Ý3£¬m¡ÊN*£©½××ÓÊýÁУ¬ÇóÖ¤£ºc1+c1+¡­+cm¡Ü2-
1
2m-1
£®
¿¼µã£ºÊýÁеÄÇóºÍ,µÈ²îÊýÁеÄÐÔÖÊ
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©ÀûÓõȲîÊýÁе͍Òå¼°ÆäÐÔÖʼ´¿ÉµÃ³ö£»
£¨2£©ÉèµÈ²îÊýÁÐb1£¬b2£¬¡­£¬bmµÄ¹«²îΪd£®ÓÉb1=
1
k
£¬¿ÉµÃb2¡Ü
1
k+1
£¬ÔÙÀûÓõȲîÊýÁеÄͨÏʽ¼°Æä²»µÈʽµÄÐÔÖʼ´¿ÉÖ¤Ã÷£»
£¨3£©Éèc1=
1
t
£¨t¡ÊN*£©£¬µÈ±ÈÊýÁÐc1£¬c2£¬¡­£¬cmµÄ¹«±ÈΪq£®ÓÉc2¡Ü
1
t+1
£¬¿ÉµÃq=
c2
c1
¡Ü
t
t+1
£®´Ó¶øcn=c1qn-1¡Ü
1
t
(
t
t+1
)n-1
£¨1¡Ün¡Üm£¬n¡ÊN*£©£®ÔÙÀûÓõȱÈÊýÁеÄǰnÏîºÍ¹«Ê½¡¢º¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®
½â´ð£º £¨1£©½â£º¡ßa2£¬a3£¬a6³ÉµÈ²îÊýÁУ¬
¡àa2-a3=a3-a6£®
ÓÖ¡ßa2=
1
2+a
£¬a3=
1
3+a
£¬a6=
1
6+a
£¬
´úÈëµÃ
1
2+a
-
1
3+a
=
1
3+a
-
1
6+a
£¬½âµÃa=0£®
£¨2£©Ö¤Ã÷£ºÉèµÈ²îÊýÁÐb1£¬b2£¬¡­£¬bmµÄ¹«²îΪd£®
¡ßb1=
1
k
£¬¡àb2¡Ü
1
k+1
£¬
´Ó¶ød=b2-b1¡Ü
1
k+1
-
1
k
=-
1
k(k+1)
£® 
¡àbm=b1+£¨m-1£©d¡Ü
1
k
-
m-1
k(k+1)
£®
ÓÖ¡ßbm£¾0£¬¡à
1
k
-
m-1
k(k+1)
£¾0£®
¼´m-1£¼k+1£®
¡àm£¼k+2£®
ÓÖ¡ßm£¬k¡ÊN*£¬¡àm¡Ük+1£® 
£¨3£©Ö¤Ã÷£ºÉèc1=
1
t
 £¨t¡ÊN*£©£¬µÈ±ÈÊýÁÐc1£¬c2£¬¡­£¬cmµÄ¹«±ÈΪq£®
¡ßc2¡Ü
1
t+1
£¬¡àq=
c2
c1
¡Ü
t
t+1
£®
´Ó¶øcn=c1qn-1¡Ü
1
t
(
t
t+1
)n-1
£¨1¡Ün¡Üm£¬n¡ÊN*£©£®
¡àc1+c2+¡­+cm¡Ü
1
t
+
1
t
(
t
t+1
)1
+
1
t
(
t
t+1
)2
+¡­+
1
t
(
t
t+1
)m-1

=
t+1
t
[1-(
t
t+1
)m]
£¬
É躯Êýf£¨x£©=x-
1
xm-1
£¬£¨m¡Ý3£¬m¡ÊN*£©£®
µ±x¡Ê£¨0£¬+¡Þ£©Ê±£¬º¯Êýf£¨x£©=x-
1
xm-1
Ϊµ¥µ÷Ôöº¯Êý£®
¡ßµ±t¡ÊN*£¬¡à1£¼
t+1
t
¡Ü2£®¡àf£¨
t+1
t
£©¡Ü2-
1
2m-1
£®
¼´ c1+c2+¡­+cm¡Ü2-
1
2m-1
£®
µãÆÀ£º±¾Ì⿼²éÁËÀûÓõȱÈÊýÁÐÓëµÈ²îÊýÁеÄͨÏʽ¼°ÆäǰnÏîºÍ¹«Ê½¡¢º¯ÊýµÄµ¥µ÷ÐÔ¡¢²»µÈʽµÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÆ½ÃæËıßÐÎABCDÖУ¬Ë³´ÎµÄÈýÌõÏß¶ÎAC=CD=DA=10£¬AB=8£¬BC=6£¬Çó£¨BD+AC£©•£¨BD-AC£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÁк¯ÊýÖУ¬Âú×ã
f(x1)+f(x2)
2
¡Ýf£¨
x1+x2
2
£©µÄÊÇ
 
£®
¢Ùf£¨x£©=ax+b£»
¢Úf£¨x£©=x2+ax+b£»
¢Ûf£¨x£©=
1
x
£»
¢Üf£¨x£©=log2
1
x
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ijÊе÷Ñлú¹¹¶Ô¸ÃÊй¤Ð½½×²ã¶Ô¡°Â¥ÊÐÏÞ¹ºÁ̬¶È½øÐе÷²é£¬³éµ÷ÁË50ÃûÊÐÃñ£¬ËûÃÇÔÂÊÕÈëÆµÊý·Ö²¼±íºÍ¶Ô¡°Â¥ÊÐÏÞ¹ºÁÔÞ³ÉÈËÊýÈçÏÂ±í£º
ÔÂÊÕÈ루µ¥Î»£º°ÙÔª£©[15£¬25£©[25£¬35£©[35£¬45£©[45£¬55£©[55£¬65£©[65£¬75£©
ƵÊý5c1055
ƵÂÊ0.1ab0.20.10.1
ÔÞ³ÉÈËÊý4812531
£¨¢ñ£©ÈôËù³éµ÷µÄ50ÃûÊÐÃñÖУ¬ÊÕÈëÔÚ[35£¬45£©µÄÓÐ15Ãû£¬Çóa£¬b£¬cµÄÖµ£¬²¢Íê³ÉƵÂÊ·Ö²¼Ö±·½Í¼£» 
£¨¢ò£©Èô´ÓÊÕÈ루µ¥Î»£º°ÙÔª£©ÔÚ[55£¬65£©µÄ±»µ÷²éÕßÖÐËæ»úѡȡÁ½È˽øÐÐ×·×Ùµ÷²é£¬ÇóÑ¡ÖеÄ2ÈËÖÁÉÙÓÐ1È˲»Ô޳ɡ°Â¥ÊÐÏÞ¹ºÁµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª³£Êýa£¾0£¬º¯Êýf£¨x£©=
x
x2+a

£¨1£©Çóf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Çóg£¨x£©=
x+1
x2+2x+3
£¬x¡Ê[-1£¬1]µÄ×î´óÖµ¡¢×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈôбÂÊ»¥ÎªÏà·´ÊýÇÒÏཻÓÚµãP£¨1£¬1£©µÄÁ½ÌõÖ±Ïß±»Ô²O£ºx2+y2=4Ëù½ØµÄÏÒ³¤Ö®±ÈΪ
6
2
£¬ÔòÕâÁ½ÌõÖ±ÏßµÄбÂÊÖ®»ýΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸´Êýz=
3-i
1+i
£¨ÆäÖÐiΪÐéÊýµ¥Î»£©ÔÚ¸´Æ½ÃæÄÚ¶ÔÓ¦µÄµãËùÔÚµÄÏóÏÞΪ£¨¡¡¡¡£©
A¡¢µÚÒ»ÏóÏÞB¡¢µÚ¶þÏóÏÞ
C¡¢µÚÈýÏóÏÞD¡¢µÚËÄÏóÏÞ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªA={x|x2-4x-5=0}£¬B={x|x2=1}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A¡¢{1}
B¡¢{1£¬-1£¬5}
C¡¢{-1}
D¡¢{1£¬-1£¬-5}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÈçÏÂËĸö½áÂÛ£º
¢ÙÈôËæ»ú±äÁ¿¦Î·þ´ÓÕý̬·Ö²¼N£¨1£¬¦Ä2£©ÇÒP£¨¦Î¡Ü4£©=0.84£¬ÔòP£¨¦Î¡Ü-2£©=0.16£»
¢Ú?a¡ÊR*£¬Ê¹µÃf£¨x£©=
-x2-x+1
ex
-aÓÐÈý¸öÁãµã£»
¢ÛÉèÖ±Ï߻ع鷽³ÌΪ
y
=3-2x£¬Ôò±äÁ¿xÔö¼ÓÒ»¸öµ¥Î»Ê±£¬yƽ¾ù¼õÉÙ2¸öµ¥Î»£»
¢ÜÈôÃüÌâp£º?x¡ÊR£¬ex£¾x+1£¬Ôò©VpÎªÕæÃüÌ⣻
ÒÔÉÏËĸö½áÂÛÕýÈ·µÄÊÇ
 
£¨°ÑÄãÈÏΪÕýÈ·µÄ½áÂÛ¶¼ÌîÉÏ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸