精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)当时,求曲线在点处的切线方程;

2)当时,讨论的单调性.

【答案】1;(2)详见解析.

【解析】试题分析:本题主要考查导数的运算、利用导数求曲线的切线方程、利用导数求函数的单调性等基础知识,考查学生的分析问题解决问题的能力、计算能力.第一问,先将代入得到表达式,对求导,将切点的横坐标2代入中得到切线的斜率k,再将切点的横坐标2代入到中,得到切点的纵坐标,最后利用点斜式写出切线方程;第二问,讨论的单调性即讨论的正负,即讨论导数表达式分子的正负,所以构造函数,通过分析题意,将分成多种情况,分类讨论,判断的正负,从而得到的单调性.

试题解析:(1)当时,

6

2)因为

所以

8

i)当a=0时,

所以当g(x)>0, 此时函数单调递减,

x1)时,g(x)<0, 此时函数f,(x)单调递增。

ii)当时,由,解得: 10

,函数f(x)上单调递减, 11

,在单调递减,在上单调递增.

a<0时,由于1/a-1<0,

x(0,1)时,g(x)>0,此时,函数f(x)单调递减;

x1)时,g(x)<0 , ,此时函数单调递增。

综上所述:

a≤ 0 时,函数f(x)在(0,1)上单调递减;

函数f(x)(1, +∞) 上单调递增

,函数f(x)(0, + ∞)上单调递减

时,函数f(x)上单调递减;

函数 f(x)上单调递增; 14

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形的面积可无限接近圆的面积,并创立了“割圆术”,利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”,利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为( )

(参考数据:

A. 12 B. 24 C. 48 D. 96

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱中,为正三角形,点在棱上,且,点分别为棱的中点.

(1)证明:平面

(2)若,求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,曲线在点处的切线与直线垂直.

(1)求的值;

(2)若对于任意的恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,曲线在点处的切线与直线垂直.

(1)求的值;

(2)若对于任意的恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,点的坐标为,直线的参数方程为为参数).以坐标原点为极点,以轴的非负半轴为极轴,选择相同的单位长度建立极坐标系,圆极坐标方程为.

(Ⅰ)当时,求直线的普通方程和圆的直角坐标方程;

(Ⅱ)直线与圆的交点为,证明:是与无关的定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点在椭圆上.

(1)求椭圆的方程;

(2)经过椭圆的右焦点的直线与椭圆交于两点,分别为椭圆的左、右顶点,记的面积分别为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的参数方程为为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系.

(1)求曲线的普通方程,并说明其表示什么轨迹;

(2)若直线的极坐标方程为,试判断直线与曲线的位置关系,若相交,请求出其弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左焦点为,上顶点为,长轴长为为直线上的动点,.当时,重合.

(1)若椭圆的方程;

(2)若直线交椭圆两点,若,求的值.

查看答案和解析>>

同步练习册答案