精英家教网 > 高中数学 > 题目详情

【题目】某市一次全市高中男生身高统计调查数据显示:全市10万名男生的身高服从正态分布.现从某学校高中男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160cm190cm之间,将身高的测量结果按如下方式分成5组:第1[160,166),第2[166172)...,第5[184190]下表是按上述分组方法得到的频率分布表:

分组

[160166)

[166172)

[172178)

[178184)

[184190]

人数

3

10

24

10

3

50个数据的平均数和方差分别比10万个数据的平均数和方差多16.68,且这50个数据的方差为.(同组中的身高数据用该组区间的中点值作代表)

(1)

(2)给出正态分布的数据:.

(i)若从这10万名学生中随机抽取1名,求该学生身高在(169,179)的概率;

(ii)若从这10万名学生中随机抽取1万名,记为这1万名学生中身高在(169184)的人数,求的数学期望.

【答案】(1) =174; (2) (i) 0.6826 (ii)8185

【解析】

1)由每组的中间值乘以该组的人数,再求和,最后除以总人数,即可求出平均值,根据题意即可得到,再由,以及题中条件,即可得出

(2)(i)先由题意得(169179)=(),根据题中所给数据,即可求出对应概率;

(ii)由题意可知(169184)=(),,先求出一名学生身高在(169184)的概率,由题意可知服从二项分布,再由二项分布的期望,即可求出结果.

解:(1)根据频率分布表中的数据可以得出这50个数据的平均数为

所以

=31.68

所以.

(2) (i)由题意可知(169179)=()

所以该学生身高在(169179)的概率为p=0.6826

(ii)由题意可知(169184)=()

所以一名学生身高在(169184)的概率为

根据题意

所以的数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个盒子里装有大小均匀的6个小球,其中有红色球4个,编号分别为1234;白色球2个,编号分别为45,从盒子中任取3个小球(假设取到任何个小球的可能性相同).

1)求取出的3个小球中,含有编号为4的小球的概率;

2)在取出的3个小球中,小球编号的最大值设为,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)当时,证明:对任意的.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数的图像关于直线对称且当过点作曲线的两条切线,若这两条切线互相垂直,则该函数的最小值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的单调区间;

2)设函数,若,且上恒成立,求的取值范围;

3)设函数,若,且上存在零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图已知椭圆是长轴的一个端点,弦过椭圆的中心,且.

(Ⅰ)求椭圆的方程:

(Ⅱ)设为椭圆上异于且不重合的两点,且的平分线总是垂直于轴,是否存在实数,使得,若存在,请求出的最大值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将三棱锥拼接得到如图所示的多面体,其中分别为的中点,.

1)当点在直线上时,证明:平面

2)若均为面积为的等边三角形,求该多面体体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,己知抛物线,直线交抛物线于两点,是抛物线外一点,连接分别交地物线于点,且.

1)若,求点的轨迹方程.

2)若,且平行x轴,求面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知焦点在轴上的抛物线过点,椭圆的两个焦点分别为,其中的焦点重合,过点的长轴垂直的直线交两点,且,曲线是以坐标原点为圆心,以为半径的圆.

(1)求的标准方程;

(2)若动直线相切,且与交于两点,求的面积的取值范围.

查看答案和解析>>

同步练习册答案