【题目】某市一次全市高中男生身高统计调查数据显示:全市10万名男生的身高服从正态分布
.现从某学校高中男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160cm和190cm之间,将身高的测量结果按如下方式分成5组:第1组[160,166),第2组[166,172),...,第5组[184,190]下表是按上述分组方法得到的频率分布表:
分组 | [160,166) | [166,172) | [172,178) | [178,184) | [184,190] |
人数 | 3 | 10 | 24 | 10 | 3 |
这50个数据的平均数和方差分别比10万个数据的平均数和方差多1和6.68,且这50个数据的方差为
.(同组中的身高数据用该组区间的中点值作代表):
(1)求
,
;
(2)给出正态分布的数据:
,
.
(i)若从这10万名学生中随机抽取1名,求该学生身高在(169,179)的概率;
(ii)若从这10万名学生中随机抽取1万名,记
为这1万名学生中身高在(169,184)的人数,求
的数学期望.
【答案】(1)
=174;
; (2) (i) 0.6826 ;(ii)8185
【解析】
(1)由每组的中间值乘以该组的人数,再求和,最后除以总人数,即可求出平均值,根据题意即可得到
,再由
,以及题中条件,即可得出
;
(2)(i)先由题意得(169,179)=(
,
),根据题中所给数据,即可求出对应概率;
(ii)由题意可知(169,184)=(
,
),,先求出一名学生身高在(169,184)的概率,由题意可知
服从二项分布,再由二项分布的期望,即可求出结果.
解:(1)根据频率分布表中的数据可以得出这50个数据的平均数为
![]()
所以
,
又
=31.68,
所以
.
(2) (i)由题意可知(169,179)=(
,
),
所以该学生身高在(169,179)的概率为p=0.6826
(ii)由题意可知(169,184)=(
,
),
所以一名学生身高在(169,184)的概率为![]()
根据题意
,
所以
的数学期望
.
科目:高中数学 来源: 题型:
【题目】一个盒子里装有大小均匀的6个小球,其中有红色球4个,编号分别为1,2,3,4;白色球2个,编号分别为4,5,从盒子中任取3个小球(假设取到任何—个小球的可能性相同).
(1)求取出的3个小球中,含有编号为4的小球的概率;
(2)在取出的3个小球中,小球编号的最大值设为
,求随机变量
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图已知椭圆
,
是长轴的一个端点,弦
过椭圆的中心
,且
,
.
![]()
(Ⅰ)求椭圆的方程:
(Ⅱ)设
为椭圆上异于
且不重合的两点,且
的平分线总是垂直于
轴,是否存在实数
,使得
,若存在,请求出
的最大值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将三棱锥
与
拼接得到如图所示的多面体,其中
,
,
,
分别为
,
,
,
的中点,
.
![]()
(1)当点
在直线
上时,证明:
平面
;
(2)若
与
均为面积为
的等边三角形,求该多面体体积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知焦点在
轴上的抛物线
过点
,椭圆
的两个焦点分别为
,
,其中
与
的焦点重合,过点
与
的长轴垂直的直线交
于
,
两点,且
,曲线
是以坐标原点
为圆心,以
为半径的圆.
(1)求
与
的标准方程;
(2)若动直线
与
相切,且与
交于
,
两点,求
的面积
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com