| A. | [${\frac{{\sqrt{3}}}{2}$,1) | B. | [$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$) | C. | [$\frac{1}{2}$,1) | D. | [$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$] |
分析 先根据椭圆定义得到|PF1|=a+ex1,|PF2|=a-ex1,再利用余弦定理,求出x12=$\frac{4{c}^{2}-3{a}^{2}}{{e}^{2}}$,利用椭圆的范围列出不等式求出离心率的范围.
解答 解:设,P(x1,y1),F1(-c,0),F2(c,0),c>0,
则|PF1|=a+ex1,|PF2|=a-ex1.
在△PF1F2中,由余弦定理得 cos120°=$\frac{|P{F}_{1}{|}^{2}+|P{F}_{2}{|}^{2}-|{F}_{1}{F}_{2}{|}^{2}}{2|P{F}_{1}|•|P{F}_{2}|}$
=$\frac{(a+e{x}_{1})^{2}+(a-e{x}_{1})^{2}-4{c}^{2}}{2(a+e{x}_{1})(a-e{x}_{1})}$=-$\frac{1}{2}$,
解得 x12=$\frac{4{c}^{2}-3{a}^{2}}{{e}^{2}}$.
∵x12∈[0,a2],
∴0≤$\frac{4{c}^{2}-3{a}^{2}}{{e}^{2}}$≤a2,
即4c2-3a2≥0.且e2<1,
∴e=$\frac{c}{a}$≥$\frac{\sqrt{3}}{2}$.
故椭圆离心率的取范围是[$\frac{\sqrt{3}}{2}$,1).
故选A.
点评 本题主要考查了椭圆的应用.当P点在短轴的端点时∠F1PF2值最大,这个结论可以记住它.在做选择题和填空题的时候直接拿来解决这一类的问题.
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{3}$ | B. | $\frac{7}{2}$ | C. | $\frac{9}{2}$ | D. | $\frac{9}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com