精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=lg(x+1),g(x)=2lg(2x+t)(t为参数).
(1)写出函数f(x)的定义域和值域;
(2)当x∈[0,1]时,如果f(x)≤g(x),求参数t的取值范围.

分析 (1)根据对数函数的图象和性质即可求出定义域和值域;
(2)由题意得到得x+1≤(2x+t)2在x∈[0,1]恒成立,分离参数得到t≥$\sqrt{x+1}$-2x在x∈[0,1]恒成立,构造函数h(x)=$\sqrt{x+1}$-2x,求出最大值即可.

解答 解:(1)定义域为(-1,+∞))
值域为:R;
(2)由f(x)≤g(x),得lg(x+1)≤2lg(2x+t),得x+1≤(2x+t)2在x∈[0,1]恒成立,
得t≥$\sqrt{x+1}$-2x在x∈[0,1]恒成立,
令u=$\sqrt{x+1}$(u∈[1,$\sqrt{2}$]),解得x=u2-1,
得h(x)=$\sqrt{x+1}$-2x=-2u2+u+2(u∈[1,$\sqrt{2}$])最大值为1,
故t的取值范围是[1,+∞).

点评 本题考查了对数函数的图象和性质,以及函数恒成立的问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.函数f(x)=$\left\{\begin{array}{l}{lnx,(0<x≤1)}\\{2x+\frac{3}{x},(x>1)}\end{array}\right.$,若函数g(x)=f(x)-kx+k的零点有2个,则k的取值范围1<k≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),经过点P(1,$\frac{\sqrt{3}}{2}$),离心率是$\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l与椭圆C交于A,B两点,且以AB为直径的圆过椭圆右顶点M,求证:直线l恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知M(3,y0)(y0>0)为抛物线C:y2=2px(p>0)上一点,F为抛物线C的焦点,且|MF|=5.
(1)求抛物线C方程;
(2)MF的延长线交抛物线于另一点N,求N的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)过点$P(0,\sqrt{3})$,离心率e=$\frac{1}{2}$,A为椭圆C1上的一点,B为抛物线C2:y2=$\frac{\sqrt{3}}{2}$x上一点,且A为线段OB的中点.
(1)求椭圆C1的方程;
(2)求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆O:x2+y2=4和点M(1,a).
(1)若过点M有且只有一条直线与圆O相切,求正数a的值,并求出切线方程;
(2)若a=$\sqrt{2}$,过点M的圆的两条弦AC,BD互相垂直.
①求四边形ABCD面积的最大值;②求|AC|+|BD|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的两焦点分别为F1,F2,若椭圆上存在一点P,使得∠F1PF2=120°,则椭圆的离心率e的取值(  )
A.[${\frac{{\sqrt{3}}}{2}$,1)B.[$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)C.[$\frac{1}{2}$,1)D.[$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{1}{3}$x3+$\frac{1-a}{2}$x2-ax-a,x∈R,其中a>0.
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)讨论函数f(x)在区间(-2,0)上零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知an=log(n+1)(n+2),(n∈N*),我们把使乘积a1,a2,a3,…an为整数的数n叫做“劣数”,则在区间(15,2015)内的所有劣数的和为2004.

查看答案和解析>>

同步练习册答案