精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{sin(\frac{π}{4}x),2≤x≤10}\end{array}\right.$,若存在实数x1,x2,x3,x4满足f(x1)=f(x2)=f(x3)=f(x4),且x1<x2<x3<x4,则$\frac{({x}_{3}-1)•({x}_{4}-1)}{{x}_{1}•{x}_{2}}$的取值范围是(  )
A.(9,21)B.(20,32)C.(8,24)D.(15,25)

分析 画出函数f(x)的图象,确定x1x2=1,x3+x4=12,2<x3<x4<10,由此可得$\frac{({x}_{3}-1)•({x}_{4}-1)}{{x}_{1}•{x}_{2}}$的取值范围.

解答 解:函数的图象如图所示,
∵f(x1)=f(x2),
∴-log2x1=log2x2
∴log2x1x2=0,
∴x1x2=1,
∵f(x3)=f(x4),
∴x3+x4=12,2<x3<x4<10
∴$\frac{({x}_{3}-1)•({x}_{4}-1)}{{x}_{1}•{x}_{2}}$=x3x4-(x3+x4)+1=x3x4-11,
∵2<x3<x4<10
∴$\frac{({x}_{3}-1)•({x}_{4}-1)}{{x}_{1}•{x}_{2}}$的取值范围是(9,21).
故选:A

点评 本小题主要考查分段函数的解析式求法及其图象的作法、函数的值域的应用、函数与方程的综合运用等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.互联网背景下的“懒人经济”和“宅经济”渐成声势,推动了互联网餐饮行业的发展,而“80后”、“90后”逐渐成为餐饮消费主力,年轻人的餐饮习惯的改变,使省时、高效、正规的外送服务逐渐进入消费者的视野,美团外卖为了调查市场情况,对50人进行了问卷调查得到了如下的列联表,按照出生年龄,对喜欢外卖与否,采用分成抽样的方法抽取容量为10的样本,则抽到喜欢外卖的人数为6.
(Ⅰ)请将下面的列联表补充完整:
 喜欢外卖不喜欢外卖合计
90后20
5
25
80后101525
合计302050
(Ⅱ)能否在犯错误的概率不超过0.005的前提下认为喜欢外卖与年龄有关?说明你的理由;
(Ⅲ)把“80后”中喜欢外卖的10个消费者从2到11进行编号,从中抽取一人,先后两次抛掷一枚骰子,出现的点数之和为被抽取的序号,试求抽到6号或10号的概率.
下面的临界值表供参考:
 P(K2≥k00.15 0.10  0.050.025 0.010 0.005 0.001 
 k02.072  2.7063.841  5.0246.635 7.879 10.828 
(参考公式:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\frac{(x-2)(x+a)}{{x}^{2}}$为偶函数,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右顶点分別为A,B,点M,N是椭圆C上关于长轴对称的两点,若直线AM与BN相交于点P,则点P的轨迹方程是(  )
A.x=±a(y≠0)B.y2=2b(|x|-a)(y≠0)
C.x2+y2=a2+b2(y≠0)D.$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(y≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,梯形ABCD中,∠BAD=∠ADC=90°,CD=2,AD=AB=1,四边形BDEF为正方形,且平面BDEF丄平面ABCD
(1)求证:DF⊥CE
(2)若AC与BD相交于点O,那么在棱AE上是否存在点G,使得平面OBG∥平面EFC?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.执行如图所示的程序框图,则输出的S值是(  )
A.$\frac{2}{3}$B.$\frac{3}{2}$C.-1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,∠ABC=120°,BA=2,BC=3,D,E是线段AC的三等分点,则$\overrightarrow{BD}$•$\overrightarrow{BE}$的值为(  )
A.$\frac{65}{9}$B.$\frac{11}{9}$C.$\frac{41}{9}$D.-$\frac{13}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设全集U=R,集合M={x|x2+x-2>0},$N=\left\{{x|{{(\frac{1}{2})}^{x-1}}≥2}\right\}$,则(∁UM)∩N=(  )
A.[-2,0]B.[-2,1]C.[0,1]D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.点M为棱长是$2\sqrt{2}$的正方体ABCD-A1B1C1D1的内切球O球面上的动点,点N为B1C1的中点,若满足DM⊥BN,则动点M的轨迹的长度为$\frac{{4\sqrt{10}π}}{5}$.

查看答案和解析>>

同步练习册答案