分析 (1)通过证明:DF⊥平面BCE,即可证明DF⊥CE
(2)棱AE上存在点G,$\frac{AG}{GE}$=$\frac{1}{2}$,使得平面OBG∥平面EFC,证明OB∥平面EFC,OG∥平面EFC,即可证明结论.
解答
(1)证明:连接EB,
∵梯形ABCD中,∠BAD=∠ADC=90°,CD=2,AD=AB=1,
∴BD=$\sqrt{2}$,BC=$\sqrt{2}$,
∴BD2+BC2=CD2,
∴BC⊥BD,
∵平面BDEF丄平面ABCD,平面BDEF∩平面ABCD=BD,
∴BC⊥平面BDEF,
∴BC⊥DF,
∵DF⊥EB,EB∩BC=B,
∴DF⊥平面BCE,
∵CE?平面BCE,
∴DF⊥CE
(2)解:棱AE上存在点G,$\frac{AG}{GE}$=$\frac{1}{2}$,使得平面OBG∥平面EFC.
∵AB∥DC,AB=1,DC=2,
∴$\frac{AO}{OC}$=$\frac{1}{2}$,
∵$\frac{AG}{GE}$=$\frac{1}{2}$,
∴OG∥CE,
∵EF∥OB,
∴OB∥平面EFC,OG∥平面EFC,
∵OB∩OG=O,
∴平面OBG∥平面EFC.
点评 本题考查了线面平行,线面垂直的判断,考查面面平行的判定,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | [-2,1] | B. | [-5,1] | C. | [-2,4] | D. | [-5,4] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2n-1 | B. | $\sqrt{\frac{{4}^{n}-1}{3}}$ | C. | $\frac{{2}^{n}-1}{3}$ | D. | $\frac{{2}^{n+1}-3}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若直线a,b与平面α所成角都是30°,则这两条直线平行 | |
| B. | 若直线a,b与平面α所成角都是30°,则这两条直线不可能垂直 | |
| C. | 若直线a,b平行,则这两条直线中至少有一条与平面α平行 | |
| D. | 若直线a,b垂直,则这两条直线与平面α不可能都垂直 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (9,21) | B. | (20,32) | C. | (8,24) | D. | (15,25) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com