精英家教网 > 高中数学 > 题目详情
2.已知f(x)=x(2016+lnx),f′(x0)=2017,则x0等于1.

分析 求函数的导数,利用方程关系进行求解即可.

解答 解:函数的导数f′(x)=2016+lnx+x•$\frac{1}{x}$=2017+lnx,
∵f′(x0)=2017,
∴f′(x0)=2017+lnx0=2017,则lnx0=0,
x0=1,
故答案为:1

点评 本题主要考查函数的导数的计算,根据条件求出函数的导数,解方程是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设Sn是等差数列{an}的前n项和,若S3=-3,S7=7,则S5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=|x+2|-m,m∈R,且f(x)≤0的解集为[-3,-1]
(1)求m的值;
(2)设 a、b、c 为正数,且 a+b+c=m,求.$\sqrt{3a+1}$+$\sqrt{3b+1}$+$\sqrt{3c+1}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,梯形ABCD中,∠BAD=∠ADC=90°,CD=2,AD=AB=1,四边形BDEF为正方形,且平面BDEF丄平面ABCD
(1)求证:DF⊥CE
(2)若AC与BD相交于点O,那么在棱AE上是否存在点G,使得平面OBG∥平面EFC?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.f(x)=-$\frac{1}{2}$x2+lnx在[$\frac{1}{e}$,e]上的最大值是-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,∠ABC=120°,BA=2,BC=3,D,E是线段AC的三等分点,则$\overrightarrow{BD}$•$\overrightarrow{BE}$的值为(  )
A.$\frac{65}{9}$B.$\frac{11}{9}$C.$\frac{41}{9}$D.-$\frac{13}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lnx-ax+$\frac{b}{x}$(a,b∈R),且对任意x>0,都有f(x)+f($\frac{1}{x}$)=0
(Ⅰ)用含a的表达式表示b;
(Ⅱ)若f(x)存在两个极值点x1,x2,且x1<x2,求出a的取值范围,并证明f($\frac{{a}^{2}}{2}$)>0;
(Ⅲ)在(Ⅱ)的条件下,判断y=f(x)零点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的两条渐进线与抛物线y2=4x的准线分别交于A,B两点,O为坐标原点,若${S_{△AOB}}=2\sqrt{3}$,则双曲线的离心率e=(  )
A.$\frac{3}{2}$B.$\frac{{\sqrt{7}}}{2}$C.2D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=x2cos x在x=1处的导数是(  )
A.0B.2cos1-sin 1C.cos1-sin 1D.1

查看答案和解析>>

同步练习册答案