精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=$\frac{(x-2)(x+a)}{{x}^{2}}$为偶函数,则a=2.

分析 依据f(x)=f(-x)求出a的值.

解答 解:∵f(x)=$\frac{(x-2)(x+a)}{{x}^{2}}$为偶函数,
∴f(x)=f(-x),即$\frac{(-x-2)(-x+a)}{{x}^{2}}$=$\frac{(x-2)(x+a)}{{x}^{2}}$
∴a=2.
故答案为:2

点评 本题主要考查函数的奇偶性的运用.属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x3-3x2-9x+2
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)求函数f(x)在区间[-2,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.有下述说法:①a>b>0是a2>b2的充分不必要条件.②a>b>0是$\frac{1}{a}<\frac{1}{b}$的充要条件.③a>b>0是a3>b3的充要条件.则其中正确的说法有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某年级举办团知识竞赛A、B、C、D四个班报名人数如下:
班别ABCD
人数45603015
年级在报名的同学中按分层抽样的方式抽取10名同学参加竞赛,每位参加竞赛的同学从10个关于团知识的题目中随机抽取4个作答,全部答对的同学获得一份奖品.
(I )求各班参加竞赛的人数:
(II) 若B班每位参加竞赛的同学对每个题目答对的概率均为p,求B班恰好有2位同学获得奖品的概率;
(III) 若这10个题目,小张同学只有2个答不对,记小张答对的题目数为X,求X的分布列及数学期望E(X)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知等比数列{an}的前n项和Sn=$\frac{{4}^{n}-1}{3}$,则数列{$\sqrt{{a}_{n}}$}的前n项和Tn=(  )
A.2n-1B.$\sqrt{\frac{{4}^{n}-1}{3}}$C.$\frac{{2}^{n}-1}{3}$D.$\frac{{2}^{n+1}-3}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.学校的校园活动中有这样一个项目.甲箱子中装有大小相同、质地均匀的4个白球,3个黑球.乙箱子中装有大小相同、质地均匀的3个白球,2个黑球.
(1)从两个箱子中分别摸出1个球,如果它们都是白球则获胜,有人认为,这两个箱子里装的白球比黑球多,所以获胜的概率大于0.5,你认为呢?并说明理由;
(2)如果从甲箱子中不放回地随机取出4个球.求取到的白球数的分布列和期望;
(3)如果从甲箱子中随机取出2个球放入乙箱中,充分混合后,再从乙箱中取出2个球放回甲箱,求甲箱中白球个数没有减少的槪率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知平面α及直线a,b,则下列说法正确的是(  )
A.若直线a,b与平面α所成角都是30°,则这两条直线平行
B.若直线a,b与平面α所成角都是30°,则这两条直线不可能垂直
C.若直线a,b平行,则这两条直线中至少有一条与平面α平行
D.若直线a,b垂直,则这两条直线与平面α不可能都垂直

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{sin(\frac{π}{4}x),2≤x≤10}\end{array}\right.$,若存在实数x1,x2,x3,x4满足f(x1)=f(x2)=f(x3)=f(x4),且x1<x2<x3<x4,则$\frac{({x}_{3}-1)•({x}_{4}-1)}{{x}_{1}•{x}_{2}}$的取值范围是(  )
A.(9,21)B.(20,32)C.(8,24)D.(15,25)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥S-ABCD中,四边形ABCD为矩形,E为SA的中点,SB=2,BC=3,$SC=\sqrt{13}$.
(Ⅰ)求证:SC∥平面BDE;
(Ⅱ)求证:平面ABCD⊥平面SAB.

查看答案和解析>>

同步练习册答案