精英家教网 > 高中数学 > 题目详情
14.某年级举办团知识竞赛A、B、C、D四个班报名人数如下:
班别ABCD
人数45603015
年级在报名的同学中按分层抽样的方式抽取10名同学参加竞赛,每位参加竞赛的同学从10个关于团知识的题目中随机抽取4个作答,全部答对的同学获得一份奖品.
(I )求各班参加竞赛的人数:
(II) 若B班每位参加竞赛的同学对每个题目答对的概率均为p,求B班恰好有2位同学获得奖品的概率;
(III) 若这10个题目,小张同学只有2个答不对,记小张答对的题目数为X,求X的分布列及数学期望E(X)

分析 (I )根据分层抽样原理计算A、B、C、D各班参加竞赛的人数即可;
(II)由题意知B班每位参加竞赛的同学得奖品的概率,
根据n次独立重复实验恰有k 次发生的概率计算公式求出概率值;
(III) 由题意知X的可能取值,计算对应的概率,
写出X的分布列,计算数学期望.

解答 解:(I )A班参加竞赛的人数为$\frac{45}{150}$×10=3,
B班参加竞赛的人数为$\frac{60}{150}$×10=4,
C班参加竞赛的人数为$\frac{30}{150}$×10=2,
D班参加竞赛的人数为$\frac{15}{150}$×10=1;
(II)根据题意,B班每位参加竞赛的同学得奖品的概率为
${C}_{4}^{4}$•p4=p4
所以B班恰好有2位同学获得奖品的概率为
${C}_{4}^{2}$•(p42•(1-p42=6p8(1-p42
(III) 由题意,X的可能取值为2,3,4,且X服从超几何分布;
且P(X=2)=$\frac{{C}_{8}^{2}{•C}_{2}^{2}}{{C}_{10}^{4}}$=$\frac{2}{15}$,
P(X=3)=$\frac{{C}_{8}^{3}{•C}_{2}^{1}}{{C}_{10}^{4}}$=$\frac{8}{15}$,
P(X=4)=$\frac{{C}_{8}^{4}{•C}_{2}^{0}}{{C}_{10}^{4}}$=$\frac{1}{3}$,
所以X的分布列为;

X234
P$\frac{2}{15}$$\frac{8}{15}$$\frac{1}{3}$
数学期望为E(X)=2×$\frac{2}{15}$+3×$\frac{8}{15}$+4×$\frac{1}{3}$=$\frac{16}{5}$.

点评 本题考查了离散型随机变量的分布列与数学期望的计算问题,也考查了古典概型的概率计算问题,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.给定椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0).设t>0,过点T(0,t)斜率为k的 直线l与椭圆C交于M,N两点,O为坐标原点.
(Ⅰ)用a,b,k,t表示△OMN的面积S,并说明k,t应满足的条件;
(Ⅱ)当k变化时,求S的最大值g(t).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.互联网背景下的“懒人经济”和“宅经济”渐成声势,推动了互联网餐饮行业的发展,而“80后”、“90后”逐渐成为餐饮消费主力,年轻人的餐饮习惯的改变,使省时、高效、正规的外送服务逐渐进入消费者的视野,美团外卖为了调查市场情况,对50人进行了问卷调查得到了如下的列联表,按照出生年龄,对喜欢外卖与否,采用分成抽样的方法抽取容量为10的样本,则抽到喜欢外卖的人数为6.
(Ⅰ)请将下面的列联表补充完整:
 喜欢外卖不喜欢外卖合计
90后20
5
25
80后101525
合计302050
(Ⅱ)能否在犯错误的概率不超过0.005的前提下认为喜欢外卖与年龄有关?说明你的理由;
(Ⅲ)把“80后”中喜欢外卖的10个消费者从2到11进行编号,从中抽取一人,先后两次抛掷一枚骰子,出现的点数之和为被抽取的序号,试求抽到6号或10号的概率.
下面的临界值表供参考:
 P(K2≥k00.15 0.10  0.050.025 0.010 0.005 0.001 
 k02.072  2.7063.841  5.0246.635 7.879 10.828 
(参考公式:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知长方形ABCD中,AB=2$\sqrt{2}$,AD=$\sqrt{2}$,M为DC的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求证:AD⊥BM;
(2)若点E是线段DB上的一动点,问点E在何位置时,二面角E-AM-D的余弦值为$\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某程序框图如图所示,若输出的p值为31,则判断框内应填入的不等式是(  )
A.n>2B.n>3C.n>4D.n>5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知命题
p1:函数f(x)=ex-e-x在R上单调递增
p2:函数g(x)=ex+e-x在R上单调递减
则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q4:p1∧(¬p2)中,真命题是(  )
A.q1,q3B.q2,q3C.q1,q4D.q2,q4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\frac{(x-2)(x+a)}{{x}^{2}}$为偶函数,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右顶点分別为A,B,点M,N是椭圆C上关于长轴对称的两点,若直线AM与BN相交于点P,则点P的轨迹方程是(  )
A.x=±a(y≠0)B.y2=2b(|x|-a)(y≠0)
C.x2+y2=a2+b2(y≠0)D.$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(y≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设全集U=R,集合M={x|x2+x-2>0},$N=\left\{{x|{{(\frac{1}{2})}^{x-1}}≥2}\right\}$,则(∁UM)∩N=(  )
A.[-2,0]B.[-2,1]C.[0,1]D.[0,2]

查看答案和解析>>

同步练习册答案