精英家教网 > 高中数学 > 题目详情
9.某程序框图如图所示,若输出的p值为31,则判断框内应填入的不等式是(  )
A.n>2B.n>3C.n>4D.n>5

分析 分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加计算p的值,条件框内的语句是决定是否结束循环,模拟执行程序即可得到答案.

解答 解:模拟程序的运行,可得
p=1,n=0
执行循环体,n=1,p=1+12=2,
不满足条件,执行循环体,n=2,p=2+22=6,
不满足条件,执行循环体,n=3,p=6+32=15,
不满足条件,执行循环体,n=4,p=15+42=31,
由题意,此时应该满足条件,退出循环,输出p的值为31,
则判断框内应填入的不等式是n>3.
故选:B.

点评 算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.记min$\left\{{a,b}\right\}=\left\{{\begin{array}{l}{a,}&{a≤b}\\{b,}&{a>b}\end{array}}$,已知向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$满足$|{\overrightarrow a}|=1,|{\overrightarrow b}$|=2,$\overrightarrow a$与$\overrightarrow b$的夹角为120°,$\overrightarrow c=λ\overrightarrow a+μ\overrightarrow b\;,λ+μ=2$,则当min$\left\{{\overrightarrow c•\overrightarrow a,\overrightarrow c•\overrightarrow b}\right\}$取得最大值时,$|{\overrightarrow c}$|=$\frac{2\sqrt{21}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\sqrt{3}$sin(ωx-$\frac{π}{6}$)-$\frac{1}{2}$(ω>0),函数图象的对称中心到对称轴的最小距离为$\frac{π}{4}$,将函数f(x)的图象向右平移$\frac{π}{12}$个单位长度得到函数g(x)的图象,若g(x)-3≤m≤g(x)+3在x∈[0,$\frac{π}{3}$]上恒成立,则实数m的取值范围是(  )
A.[-2,1]B.[-5,1]C.[-2,4]D.[-5,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.有下述说法:①a>b>0是a2>b2的充分不必要条件.②a>b>0是$\frac{1}{a}<\frac{1}{b}$的充要条件.③a>b>0是a3>b3的充要条件.则其中正确的说法有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x+$\frac{a^2}{x}$,g(x)=-x-ln(-x)其中a≠0,
(1)若x=1是函数f(x)的极值点,求实数a的值及g(x)的单调区间;
(2)若对任意的x1∈[1,2],?x2∈[-3,-2]使得f(x1)≥g(x2)恒成立,且-2<a<0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某年级举办团知识竞赛A、B、C、D四个班报名人数如下:
班别ABCD
人数45603015
年级在报名的同学中按分层抽样的方式抽取10名同学参加竞赛,每位参加竞赛的同学从10个关于团知识的题目中随机抽取4个作答,全部答对的同学获得一份奖品.
(I )求各班参加竞赛的人数:
(II) 若B班每位参加竞赛的同学对每个题目答对的概率均为p,求B班恰好有2位同学获得奖品的概率;
(III) 若这10个题目,小张同学只有2个答不对,记小张答对的题目数为X,求X的分布列及数学期望E(X)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知等比数列{an}的前n项和Sn=$\frac{{4}^{n}-1}{3}$,则数列{$\sqrt{{a}_{n}}$}的前n项和Tn=(  )
A.2n-1B.$\sqrt{\frac{{4}^{n}-1}{3}}$C.$\frac{{2}^{n}-1}{3}$D.$\frac{{2}^{n+1}-3}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知平面α及直线a,b,则下列说法正确的是(  )
A.若直线a,b与平面α所成角都是30°,则这两条直线平行
B.若直线a,b与平面α所成角都是30°,则这两条直线不可能垂直
C.若直线a,b平行,则这两条直线中至少有一条与平面α平行
D.若直线a,b垂直,则这两条直线与平面α不可能都垂直

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.复数z=$\frac{a+i}{3+4i}$∈R,则实数a的值是$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案