精英家教网 > 高中数学 > 题目详情
6.在如图所示的几何体中,平面ADNM⊥平面ABCD,四边形ABCD是菱形,ADNM是矩形,$∠DAB=\frac{π}{3}$,AB=2,AM=1,E是AB的中点.
(1)求证:平面DEM⊥平面ABM;
(2)在线段AM上是否存在点P,使二面角P-EC-D的大小为$\frac{π}{4}$?若存在,求出AP的长;若不存在,请说明理由.

分析 (1)推导出DE⊥CD,ND⊥AD,从而ND⊥DE,进而DE⊥平面NDC,由此能证明平面MAE⊥平面NDC.
(2)以D为原点,建立空间直角坐标系D-xyz,求出平面PEC的一个法向量、平面ECD的法向量.利用向量的夹角公式,建立方程,即可得出结论.

解答 证明:(1)∵ABCD是菱形,∴AD=AB,∵∠DAB=60°,∴△ABD为等边三角形,
E为AB中点,∴DE⊥AB,∴DE⊥CD,
∵ADMN是矩形,∴ND⊥AD,
又平面ADMN⊥平面ABCD,平面ADMN∩平面ABCD=AD,
∴ND⊥平面ABCD,∴ND⊥DE,
∵CD∩ND=D,∴DE⊥平面NDC,
∵DE?平面MDE,∴平面MDE⊥平面NDC.
因为面ABM∥面NDC,∴平面DEM⊥平面ABM;
(2)解:设存在P符合题意.
由(Ⅰ)知,DE、DC、DN两两垂直,以D为原点,建立空间直角坐标系D-xyz(如图),
则D(0,0,0),A($\sqrt{3}$,-1,0),E($\sqrt{3}$,0,0),C(0,2,0),P($\sqrt{3}$,-1,h)(0≤h≤1).
∴$\overrightarrow{EP}$=(0,-1,h),$\overrightarrow{EC}$=(-$\sqrt{3}$,2,0),设平面PEC的法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{EP}=-y+hz=0}\\{\overrightarrow{n}•\overrightarrow{EC}=-\sqrt{3}x+2y=0}\end{array}\right.$令x=2h,则平面PEC的一个法向量为$\overrightarrow{n}$=(2h,$\sqrt{3}$h,$\sqrt{3}$) 
取平面ECD的法向量$\overrightarrow{m}$=(0,0,1),
cos45°=$\frac{\sqrt{3}}{\sqrt{7{h}^{2}+3}}$,解得h=$\frac{\sqrt{21}}{7}$∈[0,1],
即存在点P,使二面角P-EC-D的大小为$\frac{π}{4}$,此时AP=$\frac{\sqrt{21}}{7}$.

点评 本题考查线面垂直,考查二面角,考查向量法的运用,考查学生分析解决问题的能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线l交椭圆于A,B两点,△ABF1的周长为8,且△AF1F2的面积的最大时,△AF1F2为正三角形.
(1)求椭圆C的方程;
(2)若是椭圆C经过原点的弦,MN∥AB,求证:$\frac{|MN{|}^{2}}{|AB|}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图(1),在四棱锥P-ABCD中,底面为正方形,PC与底面ABCD垂直,图(2)为该四棱锥的正视图和侧视图,它们是腰长为6cm的全等的等腰直角三角形.

(1)根据图所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积;
(2)在四棱锥P-ABCD中,求PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中底面ABCD是直角梯形,AB∥CD,∠ABC=90°,AB=2CD,BC=$\sqrt{3}$CD,△APB是等边三角形,且侧面APB⊥底面ABCD,E,F分别是PC,AB的中点.
(1)求证:PA∥平面DEF.
(2)求平面DEF与平面PCD所成的二面角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,$tanA=\frac{1}{2},cosB=\frac{{3\sqrt{10}}}{10}$,则tanC的值是(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图1,以BD为直径的圆O经过A,C两点,延长DA,CB交于P点,如图2,将PAB沿线段AB折起,使P点在底面ABCD的射影恰为AD的中点Q,AB=BC=1,BD=2,线段PB,PC的中点为E,F.
(1)判断四点A,D,E,F是否共面,并说明理由;
(2)求四棱锥E-ABCQ的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知三棱锥A-BCD中,△ABC是等腰直角三角形,且AC⊥BC,BC=2,AD⊥平面BCD,AD=1.
(1)求证:平面ABC⊥平面ACD;
(2)若E为AB中点,求点A到平面CED的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.将函数y=cos(2x+$\frac{π}{3}$)的图象向左平移$\frac{π}{6}$个单位后,得到f(x)的图象,则(  )
A.f(x)=-sin2xB.f(x)的图象关于x=-$\frac{π}{3}$对称
C.f($\frac{7π}{3}$)=$\frac{1}{2}$D.f(x)的图象关于($\frac{π}{12}$,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合M={x|16-x2≥0},集合N={y|y=|x|+1},则M∩N=(  )
A.{x|-2≤x≤4}B.{x|x≥1}C.{x|1≤x≤4}D.{x|x≥-2}

查看答案和解析>>

同步练习册答案