精英家教网 > 高中数学 > 题目详情
16.已知集合M={x|16-x2≥0},集合N={y|y=|x|+1},则M∩N=(  )
A.{x|-2≤x≤4}B.{x|x≥1}C.{x|1≤x≤4}D.{x|x≥-2}

分析 求出M中x的范围确定出M,求出N中y的范围确定出N,找出M与N的交集即可.

解答 解:由M中16-x2≥0,即即(x-4)(x+4)≤0,解得-4≤x≤4,即M={x|-4≤x≤4},
集合N={y|y=|x|+1}=[1,+∞),
则M∩N={x|1≤x≤4}
故选:C

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在如图所示的几何体中,平面ADNM⊥平面ABCD,四边形ABCD是菱形,ADNM是矩形,$∠DAB=\frac{π}{3}$,AB=2,AM=1,E是AB的中点.
(1)求证:平面DEM⊥平面ABM;
(2)在线段AM上是否存在点P,使二面角P-EC-D的大小为$\frac{π}{4}$?若存在,求出AP的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.定义1:若函数f(x)在区间D上可导,即f′(x)存在,且导函数f′(x)在区间D上也可导,则称函数f(x)在区间D上的存在二阶导数,记作f″(x)=[f′(x)]′.
定义2:若函数f(x)在区间D上的二阶导数恒为正,即f″(x)>0恒成立,则称函数f(x)在区间D上为凹函数.已知函数f(x)=x3-$\frac{3}{2}$x2+1在区间D上为凹函数,则x的取值范围是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若复数z满足z(4-i)=5+3i(i为虚数单位),则$\overline z$为(  )
A.1-iB.-1+iC.1+iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知抛物线y2=8x的准线过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一个焦点,则当$\frac{4}{a^2}+\frac{1}{b^2}$取得最小值时,双曲线的离心率为$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点P在直线x=-1上移动,过点P作圆(x-2)2+(y-2)2=1的切线,相切于点Q,则切线长|PQ|的最小值为(  )
A.2B.$2\sqrt{2}$C.3D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.一厂家生产A、B、C三类空气净化器,每类净化器均有经典版和至尊版两种型号,某月的产量如表(单位:台):
空气净化器A空气净化器B空气净化器C
经典版100150400
至尊版300450600
(I)在C类空气净化器中,用分层抽样的方法抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1台经典版空气净化器的概率;
(Ⅱ)用随机抽样的方法从B类空气净化器中抽取8台,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8台空气净化器的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={x|a-1<x<2a+1},函数f(x)=ax+b(a≠0),且f(2x+1)=4x+1.
(1)求f(x);
(2)若集合B={x|1<f(x)<3},且B⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知输入的 x 值为1,执行如图所示的程序框图,则输出的结果为(  )
A.1B.3C.7D.15

查看答案和解析>>

同步练习册答案