精英家教网 > 高中数学 > 题目详情
18.一个几何体的三视图如图所示,则该几何体的外接球的表面积为(  )
A.$\frac{{41\sqrt{41}}}{48}π$B.$\frac{41}{4}π$C.D.$\frac{4π}{3}$

分析 由三视图知该几何体为四棱锥侧面为左视图,PE⊥平面ABC,E、F分别是对应边的中点,底面ABCD是边长是2的正方形,设外接球的球心到平面ABCD的距离为h,则h2+2=1+(2-h)2,求出h,并求出球的半径,利用球的表面积公式求解.

解答 解:由三视图知该几何体为四棱锥侧面为左视图,
PE⊥平面ABC,E、F分别是对应边的中点,
底面ABCD是边长是2的正方形,
设外接球的球心到平面ABCD的距离为h,
则h2+2=1+(2-h)2
∴h=$\frac{3}{4}$,R2=$\frac{41}{16}$,
∴几何体的外接球的表面积S=4πR2=$\frac{41}{4}$π,
故选B.

点评 本题考查三视图求几何体外接球的表面积,由三视图正确复原几何体以及正确确定外接球球心的位置是解题的关键,考查空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为$\frac{1}{2}$,且各局胜负相互独立.求:
(1)打满4局比赛还未停止的概率;
(2)比赛停止时已打局数ξ的分布列与期望E(ξ).令Ak,Bk,Ck分别表示甲、乙、丙在第k局中获胜.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知四棱锥P-ABCD的外接球为球O,底面ABCD是矩形,面PAD⊥底面ABCD,且PA=PD=AD=2,AB=4,则球O的表面积为$\frac{64}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦点分别为F1(-c,0),F2(c,0),A,B是圆(x+c)2+y2=4c2与C位于x轴上方的两个交点,且F1A∥F2B,则双曲线C的离心率为(  )
A.$\frac{{2+\sqrt{7}}}{3}$B.$\frac{{4+\sqrt{7}}}{3}$C.$\frac{{3+\sqrt{17}}}{4}$D.$\frac{{5+\sqrt{17}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.直角坐标系中曲线C的参数方程为$\left\{\begin{array}{l}x=4cosθ\\ y=3sinθ\end{array}\right.$(θ为参数).
(1)求曲线C的直角坐标方程;
(2)经过点M(0,1)作直线l交曲线C于A,B两点(A在B上方),且满足|BM|=2|AM|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知A={x|x2-2mx+m2-1<0}.
(1)若m=2,求A;
(2)已知1∈A,且3∉A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在等比数列{an}中,若a1,a9是方程2x2-5x+2=0的两根,则a4•a6等于(  )
A.5B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)是定义在R上的偶函数,且在区间(0,+∞)上单调递减,若实数a满足f(log2$\frac{1}{a}$)<f(-$\frac{1}{2}$),则a的取值范围是(0,$\frac{\sqrt{2}}{2}$)∪($\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在平面直角坐标系xOy中,椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦点为F(1,0),离心率为$\frac{{\sqrt{2}}}{2}$.分别过O,F的两条弦AB,CD相交于点E(异于A,C两点),且OE=EF=1.
(1)求椭圆的方程;
(2)求证:直线AC,BD的斜率之和为定值.

查看答案和解析>>

同步练习册答案