精英家教网 > 高中数学 > 题目详情

已知函数f(x)=alnx+bx2图象上点P(1,f(1))处的切线方程为2x-y-3=0.
(I)求函数y=f(x)的解析式;
(II)函数g(x)=f(x)+m-ln4,若方程g(x)=0在数学公式上恰有两解,求实数m的取值范围.

解:(I)求导函数可得(x>0)
∵函数f(x)=alnx+bx2图象上点P(1,f(1))处的切线方程为2x-y-3=0
∴f′(1)=2,f(1)=-1

∴a=4,b=-1
∴f(x)=4lnx-x2
(II)函数g(x)=f(x)+m-ln4=4lnx-x2+m-ln4(x>0),则(x>0)
∴当x时,g′(x)>0;当x时,g′(x)<0;
∴函数在上单调增,在上单调减
∵方程g(x)=0在上恰有两解,


解得2<m≤4-2ln2
分析:(I)求导函数,利用函数f(x)=alnx+bx2图象上点P(1,f(1))处的切线方程为2x-y-3=0,建立方程组,从而可得函数y=f(x)的解析式;
(II)求导函数,确定函数的单调性与最值,从而可得不等式组,即可确定实数m的取值范围.
点评:本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性与最值,考查函数与方程思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案