精英家教网 > 高中数学 > 题目详情
14.在△ABC中,A、B、C的对边分别为a、b、c,且bcosC=3acosB-ccosB,$\overrightarrow{BA}$•$\overrightarrow{BC}$=2,则△ABC的面积为2$\sqrt{2}$.

分析 根据正弦定理结合两角和差的正弦公式进行化简求出cosB的值,结合向量数量积以及三角形的面积公式进行求解即可.

解答 解:∵bcosC=3acosB-ccosB,
∴sinBcosC=3sinAcosB-sinCcosB,
即sinBcosC+sinCcosB=3sinAcosB,
即sin(B+C)=3sinAcosB,
即sinA=3sinAcosB,
则cosB=$\frac{1}{3}$,sinB=${\sqrt{1-(\frac{1}{3})^{2}}}^{\;}$=$\frac{2\sqrt{2}}{3}$,
∵$\overrightarrow{BA}$•$\overrightarrow{BC}$=2,
∴|$\overrightarrow{BA}$|•|$\overrightarrow{BC}$|cosB=2
即$\frac{1}{3}$ac=2,ac=6,
则△ABC的面积为S=$\frac{1}{2}$acsinB=$\frac{1}{2}×6×$$\frac{2\sqrt{2}}{3}$=2$\sqrt{2}$,
故答案为:2$\sqrt{2}$.

点评 本题主要考查三角形面积的计算,利用正弦定理以及向量数量积应用是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知二次函数y=x2+px+q的图象经过原点和点(-4,0),则该二次函数的最小值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若cosα=-$\frac{4}{5}$,且α∈(0,π),则tanα=$-\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.命题“?x>0,x2-x≤0”的否定是?x>0,x2-x>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{9}$,|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{5}$,则$\overrightarrow{a}$•$\overrightarrow{b}$=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)在定义域R内可导且关于x=1对称,当x∈(-∞,1)时,(x-1)f′(x)<0,设a=f(0),b=f(-3),c=f(3),则(  )
A.a<b<cB.c<a<bC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.证明关于函数y=[x]的如下不等式:
(1)当x>0时,1-x<x[$\frac{1}{x}$]≤1;
(2)当x<0时,1≤x[$\frac{1}{x}$]<1-x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知正实数a,b满足:a+b=1,则$\frac{3a}{{a}^{2}+b}$+$\frac{2b}{a+{b}^{2}}$的最大值是(  )
A.3B.$\frac{10}{3}$C.$\sqrt{10}$D.$\frac{2\sqrt{7}+5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合A={x|a≤x≤a+3},B={x|x<-4或x>5}.若A⊆B,求a的取值范围.

查看答案和解析>>

同步练习册答案