精英家教网 > 高中数学 > 题目详情
16.设数列{an}的前n项和Sn=2n+1-2,数列{bn}满足bn=$\frac{1}{(n+1)lo{g}_{2}{a}_{n}}$,cn=an+bn
(1)求数列{an}的通项公式;
(2)求数列{cn}的前n项和Tn

分析 (1)a1=S1=2,当n≥2时,an=Sn-Sn-1=(2n+1-2)-(2n-2)=2n,数列{an}的通项公式为:an=2n
(2)由bn=$\frac{1}{(n+1)lo{g}_{2}{a}_{n}}$=$\frac{1}{(n+1)n}$=$\frac{1}{n}$-$\frac{1}{n+1}$,cn=an+bn,数列{cn}的前n项和Tn,Tn=a1+b1+a2+b2+…+an+bn,采用分组求和及等比数列通项公式和“裂项法”即可求得数列{cn}的前n项和Tn

解答 解:(1)n=1时,a1=S1=2,
∴当n≥2时,Sn-1=2n-2,
∴an=Sn-Sn-1=(2n+1-2)-(2n-2)=2n
当n=1时,成立,
∴数列{an}是以2为首项,以2为公比的等比数列,
∴数列{an}的通项公式为:an=2n
(2)bn=$\frac{1}{(n+1)lo{g}_{2}{a}_{n}}$=$\frac{1}{(n+1)n}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
由cn=an+bn
数列{cn}的前n项和Tn,Tn=a1+b1+a2+b2+…+an+bn
=2+22+23+…+2n+$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{(n+1)n}$
=2+22+23+…+2n+(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$),
=$\frac{2(1-{2}^{n})}{1-2}$+(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$),
=2n+1-2+1-$\frac{1}{n+1}$,
=2n+1-$\frac{1}{n+1}$-1,
数列{cn}的前n项和Tn=2n+1-$\frac{1}{n+1}$-1.

点评 本题考查等比数列通项公式及前n项和公式,考查分组求和,“裂项法”求数列的前n项和,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.二次函数f(x)满足且f(0)=0,且对任意x∈R总有f(x+1)=f(x)+x+1,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在等差数列{an}中,已知a1=3,a9=11则前9项和S9=(  )
A.63B.65C.72D.62

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知向量$\overrightarrow a$,$\overrightarrow b$满足$\overrightarrow a$+$\overrightarrow b$=(5,-10),$\overrightarrow a$-$\overrightarrow b$=(3,6),则$\overrightarrow a$,$\overrightarrow b$夹角的余弦值为$\frac{2\sqrt{13}}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.△ABC的三边之比为3:5:7,则这个三角形的最大角等于(  )
A.90°B.120°C.135°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设集合A={-1,0,1},B={a,a2},则使A∪B=A成立的a的值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=$\frac{ln(-{x}^{2}+2x+3)}{\sqrt{1-x}}$+x0的定义域为(  )
A.(-1,1)B.(-1,1)C.(-1,0)∪(0,1)D.(-1,0)∪(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数f(x)=$\frac{x}{(x+1)(x+a)}$的图象关于原点对称,则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论,其中错误的结论是(  )
A.AC⊥BDB.△ACD是等边三角形
C..AB与CD所成的角为60°D.AB与平面BCD所成的角为60°

查看答案和解析>>

同步练习册答案