精英家教网 > 高中数学 > 题目详情
11.△ABC的三边之比为3:5:7,则这个三角形的最大角等于(  )
A.90°B.120°C.135°D.150°

分析 设出三边的长度,利用余弦定理即可求出最大角.

解答 解:∵△ABC的三边之比为3:5:7,
∴设三边长依次为3t,5t,7t,其中t>0;
设最大角是C,由余弦定理知,
49t2=9t2+25t2-2×3t×5tcosC,
∴cosC=-$\frac{1}{2}$,
∴C=120°.
故选:B.

点评 本题考查了余弦定理的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知2x1+1,2x2+1,2x3+1,…,2xn+1的方差是3,则x1,x2,x3,…,xn的标准差为(  )
A.$\frac{3}{4}$B.$\frac{\sqrt{3}}{2}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知△ABC是边长为a的正三角形,那么△ABC平面直观图△A′B′C′的面积为(  )
A.$\frac{\sqrt{6}}{16}$a2B.$\frac{\sqrt{3}}{32}$a2C.$\frac{\sqrt{3}}{16}$a2D.$\frac{\sqrt{6}}{8}$a2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{x}{1+x}$.
(1)求f(2)与f($\frac{1}{2}$),f(3)与f($\frac{1}{3}$)的值;
(2)由(1)中求得的结果,你能发现f(x)与f($\frac{1}{x}$)有什么关系?并证明你的发现.
(3)求f(1)+f(2)+f(3)+…+f(2015)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2015}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知x>0,y>0,若不等式$\frac{x+2y}{xy}$≥$\frac{k}{2x+y}$恒成立,则实数k的最大值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设数列{an}的前n项和Sn=2n+1-2,数列{bn}满足bn=$\frac{1}{(n+1)lo{g}_{2}{a}_{n}}$,cn=an+bn
(1)求数列{an}的通项公式;
(2)求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.
(1)当a=3时,求A∩B,A∩(∁RB);
(2)若a>0时,A∩B≠∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数y=f(x)的定义域是[0,2016],则函数g(x)=$\frac{f(x+1)}{x-1}$的定义域是[-1,1)∪(1,2015].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\left\{\begin{array}{l}{x^2},x>0\\-{x^2},x<0\end{array}$则f(x)是(  )
A.奇函数B.偶函数
C.既是奇函数又是偶函数D.非奇非偶函数

查看答案和解析>>

同步练习册答案