精英家教网 > 高中数学 > 题目详情
1.若执行如图所示的程序框图,则输出的结果k=(  )
A.2B.3C.4D.5

分析 模拟执行程序框图,依次写出每次循环得到的S,T,k的值,当S=30,T=39时,满足条件退出循环可得输出的k的值.

解答 解:模拟程序的运行,可得
S=0,T=0,k=1
执行循环体,S=5,T=3,k=2
不满足条件T>S,执行循环体,S=15,T=12,k=3
不满足条件T>S,执行循环体,S=30,T=39,k=4
满足条件T>S,退出循环,输出k的值为4.
故选:C.

点评 本题主要考查了程序框图和算法,依次写出每次循环得到的S,T,k的值是解题的关键,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ex-2x.
(1)求函数f(x)的极值;
(2)当a<2-ln4且x>0时,试比较f(x)与x2+(a-2)x+1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知定义在区间[-3,3]上的函数f(x)=2x+m满足f(2)=6,在[-3,3]上随机取一个实数x,则使得f(x)的值不小于4的概率为(  )
A.$\frac{5}{6}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的渐近线与圆${({x-2\sqrt{2}})^2}+{y^2}=\frac{8}{3}$相切,则该双曲线的离心率为(  )
A.$\frac{{\sqrt{6}}}{2}$B.$\frac{3}{2}$C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知f(x)是R上可导的增函数,g(x)是R上可导的奇函数,对?x1,x2∈R都有|g(x1)+g(x2)|≥|f(x1)+f(x2)|成立,等差数列{an}的前n项和为Sn,f(x)同时满足下列两件条件:f(a2-1)=1,f(a9-1)=-1,则S10的值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x+2|.
(1)解不等式2f(x)<4-|x-1|;
(2)已知m+n=1(m>0,n>0),若不等式$|{x-a}|-f(x)≤\frac{1}{m}+\frac{1}{n}$恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数$y=sin({\frac{π}{3}x+\frac{π}{6}})$的图象可由函数$y=cos\frac{π}{3}x$的图象至少向右平移m(m>0)个单位长度得到,则m=(  )
A.1B.$\frac{1}{2}$C.$\frac{π}{6}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知向量$\overrightarrow a=(cos(\frac{π}{2}+x),sin(\frac{π}{2}+x))$,$\overrightarrow b=(-sinx,\sqrt{3}sinx)$,f(x)=$\overrightarrow a•\overrightarrow b$.
(1)求函数f(x)的最小正周期及f(x)的最大值;
(2)在锐角三角形ABC中,角A,B,C的对边分别为a,b,c,若f($\frac{A}{2}$)=1,a=2$\sqrt{3}$,求三角形ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设复数z=1+i,则复数z+$\frac{2}{z}$=2.

查看答案和解析>>

同步练习册答案