精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=ex-2x.
(1)求函数f(x)的极值;
(2)当a<2-ln4且x>0时,试比较f(x)与x2+(a-2)x+1的大小.

分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出f(x)的极值即可;
(2)令g(x)=f(x)-x2-(a-2)x-1,求出函数的导数,根据函数的单调性求出g(x)的最小值,从而判断大小即可.

解答 解:(1)f′(x)=ex-2,
令f′(x)>0,解得:x>ln2,
令f′(x)<0,解得:x<ln2,
故f(x)在(-∞,ln2)递减,在(ln2,+∞)递增,
故当x=ln2时f(x)有极小值f(ln2)=2-2ln2,无极大值.
(2)令g(x)=f(x)-x2-(a-2)x-1=ex-x2-ax-1,
g′(x)=ex-2x-a=f(x)-a,
∴g′(x)min=f(x)min-a=2-2ln2-a,
∵a<2-ln4∴g′(x)>0,
∴g(x)在(0,+∞)单调递增,
∴g(x)>g(0)=0,
即f(x)>x2+(a-2)x+1.

点评 本题考查了函数的单调性、极值问题,考查导数的应用以及转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.如图,设D是图中边长分别为1和2的矩形区域,E是D内位于函数$y=\frac{1}{x}(x>0)$图象下方的阴影部分区域,则阴影部分E的面积为1+ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知边长为2 的菱形ABCD中,∠BAD=120°,若$\overrightarrow{AP}$=λ$\overrightarrow{AC}$(0<λ<1),则$\overrightarrow{BP}$•$\overrightarrow{PD}$的取值范围为(  )
A.[0,3]B.[2,3]C.(0,3]D.(2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将周期为π的函数f(x)=2sin(ωx+$\frac{π}{3}$),(ω>0)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是(  )
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=2+2cost\\ y=2sint\end{array}\right.(t$为参数),在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:θ=$\frac{π}{6}$(ρ>0),A(2,0).
(1)把C1的参数方程化为极坐标方程;
(2)设C3分别交C1,C2于点P,Q,求△APQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知三棱锥S-ABC的三条侧棱相等,体积为$\frac{\sqrt{3}}{4}$,AB=BC=$\sqrt{3}$,∠ACB=30°,则三棱锥S-ABC外接球的体积为$\frac{32}{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在正方体ABCD-A1B1C1D1中,E、F分别是BC、A1D1的中点.
(1)求证:四边形B1EDF是菱形;
(2)求异面直线A1C与DE所成的角 (结果用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足:a1=3,an+1=a${\;}_{n}^{2}$-nan+1.
(Ⅰ)求a2,a3的值;
(Ⅱ)猜测an与n+2的大小关系,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若执行如图所示的程序框图,则输出的结果k=(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案