精英家教网 > 高中数学 > 题目详情
11.如图,设D是图中边长分别为1和2的矩形区域,E是D内位于函数$y=\frac{1}{x}(x>0)$图象下方的阴影部分区域,则阴影部分E的面积为1+ln2.

分析 首先利用定积分表示阴影部分的面积,然后计算定积分.

解答 解:由已知得到矩形面积SD=1×2=2,${S_E}=\frac{1}{2}×2+\int_{\frac{1}{2}}^1{\frac{1}{x}}dx$
=1+lnx|${\;}_{\frac{1}{2}}^{1}$=$1+ln1-ln\frac{1}{2}$=1+ln2;
故答案为:1+ln2.

点评 本题考查了利用定积分求曲边梯形的面积;关键是正确利用定积分表示面积,然后正确计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设max{m,n}表示m,n中最大值,则关于函数f(x)=max{sinx+cosx,sinx-cosx}的命题中,真命题的个数是(  )
①函数f(x)的周期T=2π
②函数f(x)的值域为$[-1,\sqrt{2}]$
③函数f(x)是偶函数 
④函数f(x)图象与直线x=2y有3个交点.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知a是大于0的常数,把函数y=ax和$y=\frac{1}{ax}+x$的图象画在同一坐标系中,选项中不可能出现的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,在△ABC中,点D在BC边上,且CD=2DB,点E在AD边上,且AD=3AE,则用向量$\overrightarrow{AB},\overrightarrow{AC}$表示$\overrightarrow{CE}$为(  )
A.$\overrightarrow{CE}=\frac{2}{9}\overrightarrow{AB}+\frac{8}{9}\overrightarrow{AC}$B.$\overrightarrow{CE}=\frac{2}{9}\overrightarrow{AB}-\frac{8}{9}\overrightarrow{AC}$C.$\overrightarrow{CE}=\frac{2}{9}\overrightarrow{AB}+\frac{7}{9}\overrightarrow{AC}$D.$\overrightarrow{CE}=\frac{2}{9}\overrightarrow{AB}-\frac{7}{9}\overrightarrow{AC}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x-1|+|x+1|,P为不等式f(x)>4的解集.
(Ⅰ)求P;
(Ⅱ)证明:当m,n∈P时,|mn+4|>2|m+n|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.$({{x^2}+1}){({\frac{1}{{\sqrt{x}}}-2})^5}$的展开式的常数项是(  )
A.5B.-10C.-32D.-42

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知实数x,y满足$\left\{\begin{array}{l}x≥0\\ x≤y\\ x+y≥2\end{array}\right.$,则z=2x+y的最小值是(  )
A.0B.2C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$|{\overrightarrow a}|=1,|{\overrightarrow b}|=2$,$|{\overrightarrow a-2\overrightarrow b}|=\sqrt{13}$,则$\overrightarrow a$与$\overrightarrow b$的夹角为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ex-2x.
(1)求函数f(x)的极值;
(2)当a<2-ln4且x>0时,试比较f(x)与x2+(a-2)x+1的大小.

查看答案和解析>>

同步练习册答案