精英家教网 > 高中数学 > 题目详情
一座抛物线拱桥,高水位时,拱顶离水面2m,水面宽4m,当水面下降1m后,水面宽为
 
m.
考点:抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:先建立直角坐标系,将A点代入抛物线方程求得m,得到抛物线方程,再把y=-3代入抛物线方程求得x0进而得到答案.
解答: 解:如图建立直角坐标系,设抛物线方程为x2=my,
将A(2,-2)代入x2=my,
得m=-2
∴x2=-2y,代入B(x0,-3)得x0=
6

故水面宽为2
6
m.
故答案为:2
6
点评:本题主要考查抛物线的应用.考查了学生利用抛物线解决实际问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}满足:a1=5,an+1+4an=5
(Ⅰ)求证:{an-1}是等比数列;
(Ⅱ)设数列bn=|an|,求|bn|的前2014项和S2014

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=1+
2
x
,(x>0)

(1)数列{an}满足a1=1,an+1=
1
f(an)
,(n∈N+)
,求数列{an}的通项公式及数列{2n•an•an+1}的前n项和;
(2)设函数g(x)=
1
2
(x2+1)•[f(x)-1]
,试比较[g(x)]n+2与g(xn)+2n(n∈N+)的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是60°的二面角α-l-β内一点,PA⊥平面α,PB⊥平面β,A,B为垂足,PA=4,PB=2,则AB的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

以下四个关于圆锥曲线的命题:
①双曲线
x2
25
-
y2
9
=1与椭圆
x2
35
+y2=1有相同的焦点;
②设A、B为两个定点,k为非零常数,若|
PA
|-|
PB
|=k,则动点P的轨迹为双曲线;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④过定圆C上一定点A作圆的动弦AB,O为坐标原点,若
OP
=
1
2
OA
+
OB
),则动点P的轨迹为椭圆.
其中真命题的序号为
 
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩形ABCD中,AB=3,BC=4,将△ACD沿着AC折成120°的二面角,则B,D两点的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设M是圆(x-4)2+(y-
3
2=1上的任意一点,则点M到直线x+
3
y=0的最大距离是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

sin
23
6
π=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-2+
1
x-1
(x>1),当x=a时,取f(x)得最小值b,则a+b=
 

查看答案和解析>>

同步练习册答案