精英家教网 > 高中数学 > 题目详情
2.如图所示,已知$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,$\overrightarrow{OD}$=$\overrightarrow{d}$,$\overrightarrow{OF}$=$\overrightarrow{f}$,试用$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,$\overrightarrow{d}$,$\overrightarrow{f}$表示下列向量.
(1)$\overrightarrow{AC}$;
(2)$\overrightarrow{AD}$;
(3)$\overrightarrow{AD}$$-\overrightarrow{AB}$;
(4)$\overrightarrow{AB}$+$\overrightarrow{CF}$;
(5)$\overrightarrow{BF}$-$\overrightarrow{BD}$.

分析 利用平面向量线性运算的三角形法则进行表示.

解答 解:(1)$\overrightarrow{AC}$=$\overrightarrow{OC}-\overrightarrow{OA}$=$\overrightarrow{c}-\overrightarrow{a}$;
(2)$\overrightarrow{AD}$=$\overrightarrow{OD}-\overrightarrow{OA}$=$\overrightarrow{d}-\overrightarrow{a}$;
(3)$\overrightarrow{AD}-\overrightarrow{AB}$=$\overrightarrow{BD}$=$\overrightarrow{OD}-\overrightarrow{OB}$=$\overrightarrow{d}-\overrightarrow{b}$;
(4)$\overrightarrow{AB}+\overrightarrow{CF}$=$\overrightarrow{OB}-\overrightarrow{OA}$+$\overrightarrow{OF}-\overrightarrow{OC}$=$\overrightarrow{b}-\overrightarrow{a}+\overrightarrow{f}-\overrightarrow{c}$;
(5)$\overrightarrow{BF}-\overrightarrow{BD}$=$\overrightarrow{DF}$=$\overrightarrow{OF}-\overrightarrow{OD}$=$\overrightarrow{f}-\overrightarrow{d}$.

点评 本题考查了平面向量线性运算的三角形法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.PA⊥矩形ABCD所在的平面,且AB=a,AD=b.问:在BC边上是否存在一点E,使DE⊥平面PAE?若不存在,说明理由;若存在,求出恰有一点时E的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知cosθ=-$\frac{3}{5}$,θ∈($\frac{π}{2}$,π),求sin(θ+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知:$\overrightarrow{a}$=(2cosx,sinx),$\overrightarrow{b}$=($\sqrt{3}$cosx,2cosx),设函数f(x)=$\overrightarrow{a}•\overrightarrow{b}$-$\sqrt{3}$(x∈R)求:
(1)f(x)的最小正周期及最值;
(2)f(x)的对称轴及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若x是三角形的最小内角,则函数y=sinx+cosx-sinxcosx的最小值是(  )
A.-$\frac{1}{2}$+$\sqrt{2}$B.$\frac{1}{2}$+$\sqrt{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在半径为5cm的圆中,圆心角为圆周角的$\frac{2}{3}$的角所对的圆弧长为(  )
A.$\frac{4π}{3}$cmB.$\frac{20π}{3}$cmC.$\frac{10π}{3}$cmD.$\frac{50π}{3}$cm

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知实数20、m2、52构成一个等差数列,则圆锥曲线$\frac{{x}^{2}}{m}+{y}^{2}=1$的离心率为(  )
A.$\frac{\sqrt{30}}{6}$B.$\sqrt{7}$C.$\frac{\sqrt{30}}{6}$或$\sqrt{7}$D.$\frac{5}{6}$或7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(2,0,2),(2,2,0),(0,2,2),(1,0,0),画该四面体三视图中的主视图时,以zOx平面为投影面,则得到主视图可以为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知三棱锥S-ABC的各个顶点都在一个半径为r的球面上,球心O在AB上,SO⊥底面ABC,AC=$\sqrt{2}$r,则球的体积与三棱锥体积之比是4π.

查看答案和解析>>

同步练习册答案