精英家教网 > 高中数学 > 题目详情
12.如图F1,F2是双曲线${C_1}:{x^2}-\frac{y^2}{8}=1$与椭圆C2的公共焦点,点A是C1,C2在第一象限内的公共点,若|F1F2|=|F1A|,则C2的离心率是(  )
A.$\frac{2}{3}$B.$\frac{4}{5}$C.$\frac{3}{5}$D.$\frac{2}{5}$

分析 利用椭圆以及双曲线的定义,转化求解椭圆的离心率即可.

解答 解:由题意F1,F2是双曲线${C_1}:{x^2}-\frac{y^2}{8}=1$与椭圆C2的公共焦点可知,|F1F2|=|F1A|=6,
∵|F1A|-|F2A|=2,∴|F2A|=4,∴|F1A|+|F2A|=10,
∵2a=10,∴C2的离心率是$\frac{6}{10}=\frac{3}{5}$.
故选:C.

点评 本题考查椭圆以及双曲线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若点P(x,y)坐标满足不等式组$\left\{\begin{array}{l}x≤0\\ y≥0\\ y-x≤2\end{array}\right.$,则|x+3y|的取值范围[0,6].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知偶函数f(x)的定义域为(-1,0)∪(0,1),且$f(\frac{1}{e})=0$.当0<x<1时,(1-x2)ln(1-x2)f'(x)>2xf(x),则满足f(x)<0的x的取值范围是(  )
A.$(-\frac{1}{e},0)∪(0,\frac{1}{e})$B.$(-\frac{1}{2},0)∪(\frac{1}{2},1)$C.$(-1,-\frac{1}{e})∪(\frac{1}{e},1)$D.$(-1,-\frac{1}{2})∪(0,\frac{1}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x2+$\frac{a}{x}$,则“0<a<2”是“函数f(x)在(1,+∞)上为增函数”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}{10x-1,x≤0}\\{{e}^{x},x>0}\end{array}\right.$(e为自然对数的底).若函数g(x)=f(x)-kx恰好有两个零点,则实数k的取值范围是(  )
A.(1,e)B.(e,10]C.(1,10]D.(10,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$sin(α-\frac{π}{12})=\frac{1}{3}$,则$cos(α+\frac{17π}{12})$的值等于(  )
A.$\frac{1}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.$-\frac{1}{3}$D.$-\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,圆Q:x2+y2-4x-2y+3=0的圆心Q在椭圆C上,点P(0,1)到椭圆C的右焦点的距离为2.
(1)求椭圆C的方程;
(2)过点P作直线l交椭圆C于A,B两点,若S△AQB=tan∠AQB,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题中不正确的是(  )
A.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ
B.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β
C.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β
D.如果平面α⊥平面β,且直线l∥平面α,则直线l⊥平面β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.口袋中有若干红球、黄球和蓝球,从中摸出一只球.摸出红球的概率为0.48,摸出黄球的概率为0.35,则摸出蓝球的概率为0.17.

查看答案和解析>>

同步练习册答案