| A. | (1,e) | B. | (e,10] | C. | (1,10] | D. | (10,+∞) |
分析 令g(x)=0得出f(x)=kx,做出y=kx与y=f(x)的函数图象,则两图象有两个交点,求出y=f(x)的过原点的切线的斜率即可得出k的范围.
解答 解:令g(x)=0得f(x)=kx,
∵g(x)有两个零点,
∴直线y=kx与y=f(x)有两个交点,
做出y=kx和y=f(x)的函数图象,如图所示:![]()
设y=k1x与曲线y=ex相切,切点为(x0,y0),
则$\left\{\begin{array}{l}{{k}_{1}={e}^{{x}_{0}}}\\{{y}_{0}={e}^{{x}_{0}}}\\{{y}_{0}={k}_{1}{x}_{0}}\end{array}\right.$,解得$\left\{\begin{array}{l}{{x}_{0}=1}\\{{y}_{0}=e}\\{{k}_{1}=e}\end{array}\right.$.
∵y=kx与y=f(x)有两个交点,
∴k的取值范围是(e,10].
故选B.
点评 本题考查了函数零点的个数与函数的图象的关系,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | a<c<b | B. | a<b<c | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2.5 | B. | 3 | C. | 3.2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{4}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1] | B. | [1,2] | C. | [$\frac{2}{3}$,2] | D. | [$\frac{2}{3}$,$\frac{4}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com