精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=$\left\{\begin{array}{l}{10x-1,x≤0}\\{{e}^{x},x>0}\end{array}\right.$(e为自然对数的底).若函数g(x)=f(x)-kx恰好有两个零点,则实数k的取值范围是(  )
A.(1,e)B.(e,10]C.(1,10]D.(10,+∞)

分析 令g(x)=0得出f(x)=kx,做出y=kx与y=f(x)的函数图象,则两图象有两个交点,求出y=f(x)的过原点的切线的斜率即可得出k的范围.

解答 解:令g(x)=0得f(x)=kx,
∵g(x)有两个零点,
∴直线y=kx与y=f(x)有两个交点,
做出y=kx和y=f(x)的函数图象,如图所示:

设y=k1x与曲线y=ex相切,切点为(x0,y0),
则$\left\{\begin{array}{l}{{k}_{1}={e}^{{x}_{0}}}\\{{y}_{0}={e}^{{x}_{0}}}\\{{y}_{0}={k}_{1}{x}_{0}}\end{array}\right.$,解得$\left\{\begin{array}{l}{{x}_{0}=1}\\{{y}_{0}=e}\\{{k}_{1}=e}\end{array}\right.$.
∵y=kx与y=f(x)有两个交点,
∴k的取值范围是(e,10].
故选B.

点评 本题考查了函数零点的个数与函数的图象的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=log3|x-t|是偶函数,记$a=f({{{log}_{0.3}}4}),b=f({{π^{1.5}}}),c=f({2-t})$则a,b,c的大小关系为(  )
A.a<c<bB.a<b<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,曲线C1的参数方程为$\left\{{\begin{array}{l}{x=4+3cost}\\{y=5+3sint}\end{array}}\right.$(其中t为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ
(1)求曲线C1的普通方程和C2的直角坐标方程;
(2)若A、B分别为曲线C1,C2上的动点,求当|AB|取最小值时△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知a∈R,函数f(x)=ln(x+a)-x,曲线y=f(x)与x轴相切.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)是否存在实数m使得$\frac{f(x)}{x}>m(1-{e^x})$恒成立?若存在,求实数m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.中国古代数学名著《九章算术》中记载了公元前344年商鞅制造一种标准量器-商鞅铜方升,其三视图(单位:寸)如图所示,若π取3,其体积为12.6(立方寸),则图中x的为(  )
A.2.5B.3C.3.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图F1,F2是双曲线${C_1}:{x^2}-\frac{y^2}{8}=1$与椭圆C2的公共焦点,点A是C1,C2在第一象限内的公共点,若|F1F2|=|F1A|,则C2的离心率是(  )
A.$\frac{2}{3}$B.$\frac{4}{5}$C.$\frac{3}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知△ABC外接圆半径是2,$BC=2\sqrt{3}$,则△ABC的面积最大值为$3\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=sin2x+2$\sqrt{3}$cos2x-$\sqrt{3}$,函数g(x)=mcos(2x-$\frac{π}{6}$)-2m+3(m>0),若存在x1,x2∈[0,$\frac{π}{4}$],使得f(x1)=g(x2)成立,则实数m的取值范围是(  )
A.(0,1]B.[1,2]C.[$\frac{2}{3}$,2]D.[$\frac{2}{3}$,$\frac{4}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)离心率为$\frac{\sqrt{2}}{2}$,左、右焦点分别为F1,F2,左顶点为A,|AF1|=$\sqrt{2}$-1
(Ⅰ) 求椭圆的方程;
(Ⅱ) 若直线l经过F2与椭圆交于M,N两点,求$\overrightarrow{{F_1}M}$•$\overrightarrow{{F_1}N}$取值范围.

查看答案和解析>>

同步练习册答案