精英家教网 > 高中数学 > 题目详情
18.在直角坐标系xOy中,曲线C1的参数方程为$\left\{{\begin{array}{l}{x=4+3cost}\\{y=5+3sint}\end{array}}\right.$(其中t为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ
(1)求曲线C1的普通方程和C2的直角坐标方程;
(2)若A、B分别为曲线C1,C2上的动点,求当|AB|取最小值时△AOB的面积.

分析 (1)曲线C1的参数方程为$\left\{{\begin{array}{l}{x=4+3cost}\\{y=5+3sint}\end{array}}\right.$(其中t为参数),消去参数t可得普通方程.曲线C2的极坐标方程为ρ=2sinθ,即ρ2=2ρsinθ,利用ρ2=x2+y2,y=ρsinθ,即可化为直角坐标方程.
(2)当A,B,C1,C2四点共线,且A,B在线段C1C2上时,|AB|取最小值,求出|AB|长,及原点到直线的距离,可得此时△AOB的面积.

解答 解:(1)由曲线C1的参数方程为$\left\{{\begin{array}{l}{x=4+3cost}\\{y=5+3sint}\end{array}}\right.$(其中t为参数),
可得曲线C1的普通方程为:(x-4)2+(y-5)2=9,
由曲线C2的极坐标方程为ρ=2sinθ,即ρ2=2ρsinθ,
将ρ2=x2+y2,y=ρsinθ代入得:
C2的直角坐标方程为:x2+y2=2y,配方为x2+(y-1)2=1.
(2)如图,当A,B,C1,C2四点共线,且A,B在线段C1C2上时,|AB|取最小值,

由(1)得:C1(4,5),C2(0,1),
∴${k}_{{C}_{1}{C}_{2}}=\frac{5-1}{4-0}$=1,
故直线C1C2的方程为:x-y+1=0,
∴点O到直线C1C2的距离d=$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
又∵|AB|=|C1C2|-1-3=4$\sqrt{2}$-4,
故△AOB的面积S=2-$\sqrt{2}$.

点评 本题考查了极坐标与直角坐标方程的互化、参数方程化为普通方程、三角形面积公式、点到直线的距离公式公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.对于函数f(x)=atanx+bx3+cx(a、b、c∈R),选取a、b、c的一组值计算f(1)、f(-1),所得出的正确结果可能是(  )
A.2和1B.2和0C.2和-1D.2和-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列命题中真命题的个数是(  )
(1)有两个互相平行,其余各面都是平行四边形的多面体是棱柱.
(2)四棱锥的四个侧面可以是直角三角形.
(3)用一个平面去截圆锥,得到一个圆锥和一个圆台.
(4)圆锥的轴截面是所有过圆锥顶点的截面中面积最大的.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若复数z 满足z(1+i)=-2i(i为虚数单位),则复数z 在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右顶点为A,O 为坐标原点,以A 为圆心的圆与双曲线C 的一条渐近线交于 P,Q 两点.若∠PAQ=60°,且|PQ|=$\frac{{\sqrt{3}}}{3}a$,则双曲线C 的渐近线方程为(  )
A.$y=±\frac{{\sqrt{3}}}{3}x$B.$y=±\frac{{\sqrt{3}}}{2}x$C.y=±3xD.$y=±\frac{{2\sqrt{3}}}{3}x$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知偶函数f(x)的定义域为(-1,0)∪(0,1),且$f(\frac{1}{e})=0$.当0<x<1时,(1-x2)ln(1-x2)f'(x)>2xf(x),则满足f(x)<0的x的取值范围是(  )
A.$(-\frac{1}{e},0)∪(0,\frac{1}{e})$B.$(-\frac{1}{2},0)∪(\frac{1}{2},1)$C.$(-1,-\frac{1}{e})∪(\frac{1}{e},1)$D.$(-1,-\frac{1}{2})∪(0,\frac{1}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=$\frac{sinx}{ln|x|}$(x≠0)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}{10x-1,x≤0}\\{{e}^{x},x>0}\end{array}\right.$(e为自然对数的底).若函数g(x)=f(x)-kx恰好有两个零点,则实数k的取值范围是(  )
A.(1,e)B.(e,10]C.(1,10]D.(10,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设全集U=R,集合A={x|x2-3x>0},则∁UA=(  )
A.[0,3]B.(0,3)C.(-∞,0)∪(3,+∞)D.(-∞,0]∪[3,+∞)

查看答案和解析>>

同步练习册答案