精英家教网 > 高中数学 > 题目详情
10.函数y=$\frac{sinx}{ln|x|}$(x≠0)的图象大致是(  )
A.B.C.D.

分析 判断函数的奇偶性,排除选项,利用特殊值判断即可.

解答 解:函数y=$\frac{sinx}{ln|x|}$(x≠0)是奇函数,排除C,D.
当x=$\frac{π}{4}$时,y=$\frac{sin\frac{π}{4}}{ln\frac{π}{4}}$<0.
排除B,
故选:A.

点评 本题考查函数的图象的判断与应用,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.在区间[-2,3]中任取一个数m,则使“双曲线$\frac{{x}^{2}}{{m}^{2}-1}$-$\frac{{y}^{2}}{4-m}$=1的离心率大于$\sqrt{3}$的概率是(  )
A.$\frac{7}{10}$B.$\frac{3}{10}$C.$\frac{1}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在投篮测试中,每人投3次,其中至少有两次投中才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学能通过测试的概率为(  )
A.0.352B.0.432C.0.36D.0.648

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,曲线C1的参数方程为$\left\{{\begin{array}{l}{x=4+3cost}\\{y=5+3sint}\end{array}}\right.$(其中t为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ
(1)求曲线C1的普通方程和C2的直角坐标方程;
(2)若A、B分别为曲线C1,C2上的动点,求当|AB|取最小值时△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给出下列四个命题:
①已知m,n是常数,“mn<0”是“mx2+ny2=1表示双曲线的充分不必要条件”;
②命题p:“?x∈R,sinx≤1”的否定是¬p:“?x0∈R,sinx0>1”;
③已知命题p和q,若p∨q是假命题,则p与q中必一真一假;
④命题“若a>b>0,则a2>b2”的逆命题是假命题.
其中真命题的序号是(  )
A.①②④B.①③④C.②④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知a∈R,函数f(x)=ln(x+a)-x,曲线y=f(x)与x轴相切.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)是否存在实数m使得$\frac{f(x)}{x}>m(1-{e^x})$恒成立?若存在,求实数m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.中国古代数学名著《九章算术》中记载了公元前344年商鞅制造一种标准量器-商鞅铜方升,其三视图(单位:寸)如图所示,若π取3,其体积为12.6(立方寸),则图中x的为(  )
A.2.5B.3C.3.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知△ABC外接圆半径是2,$BC=2\sqrt{3}$,则△ABC的面积最大值为$3\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知抛物线C的顶点在坐标原点,焦点F在x轴的正半轴上,过点F的直线l与抛物线C相交于A、B两点,且满足$\overrightarrow{OA}•\overrightarrow{OB}=-\frac{3}{4}$.
(1)求抛物线C的标准方程;
(2)若点M在抛物线C的准线上运动,其纵坐标的取值范围是[-1,1],且$\overrightarrow{MA}•\overrightarrow{MB}=9$,点N是以线段AB为直径的圆与抛物线C的准线的一个公共点,求点N的纵坐标的取值范围.

查看答案和解析>>

同步练习册答案