16£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©ÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬×ó¶¥µãΪA£¬|AF1|=$\sqrt{2}$-1
£¨¢ñ£© ÇóÍÖÔ²µÄ·½³Ì£»
£¨¢ò£© ÈôÖ±Ïßl¾­¹ýF2ÓëÍÖÔ²½»ÓÚM£¬NÁ½µã£¬Çó$\overrightarrow{{F_1}M}$•$\overrightarrow{{F_1}N}$ȡֵ·¶Î§£®

·ÖÎö £¨¢ñ£© ÉèF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬ÀûÓÃÒÑÖªÌõ¼þÁгö·½³Ì×飬Çó½â¼´¿É£®
£¨¢ò£©µ±Ö±ÏßlбÂÊ´æÔÚʱ£ºÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬Ö±ÏßlΪ£ºy=k£¨x-1£©£¬´úÈë$\frac{x^2}{2}+{y^2}=1$ÀûÓÃΤ´ï¶¨Àí£¬ÍÆ³ö$\overrightarrow{{F_1}M}•\overrightarrow{{F_1}N}¡Ê[-1£¬\frac{7}{2}£©$£®µ±Ö±ÏßlбÂʲ»´æÔÚʱ£º$\left\{\begin{array}{l}x=1\\ \frac{x^2}{2}+{y^2}=1\end{array}\right.£¬y=¡À\frac{{\sqrt{2}}}{2}$£¬ÍƳö$\overrightarrow{{F_1}M}•\overrightarrow{{F_1}N}=£¨2£¬\frac{{\sqrt{2}}}{2}£©•£¨2£¬-\frac{{\sqrt{2}}}{2}£©=\frac{7}{2}$£®

½â´ð £¨±¾Ð¡ÌâÂú·Ö12·Ö£©
½â£º£¨¢ñ£© ÉèF1£¨-c£¬0£©£¬F2£¨c£¬0£©
¡à$\left\{\begin{array}{l}\frac{c}{a}=\frac{{\sqrt{2}}}{2}\\ a-c=\sqrt{2}-1\end{array}\right.£¬\left\{\begin{array}{l}a=\sqrt{2}\\ c=1\end{array}\right.$-------------£¨2·Ö£©
¡àb2=a2-c2=1£¬¡à$\frac{x^2}{2}+{y^2}=1$-------------------------------£¨4·Ö£©
£¨¢ò£©µ±Ö±ÏßlбÂÊ´æÔÚʱ£ºÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬Ö±ÏßlΪ£ºy=k£¨x-1£©£¬´úÈë$\frac{x^2}{2}+{y^2}=1$
µÃ£º$\frac{x^2}{2}+{k^2}{£¨x-1£©^2}=1£¬ÕûÀíµÃ£º$£¨1+2k2£©x2-4k2x+2k2-2=0£¬ÓÉÌâÒâ¡÷£¾0
ËùÒÔ${x_1}+{x_2}=\frac{{4{k^2}}}{{2{k^2}+1}}£¬{x_1}{x_2}=\frac{{2{k^2}-2}}{{2{k^2}+1}}$£¬--------------------------------------£¨7·Ö£©
ËùÒÔ$\overrightarrow{{F_1}M}•\overrightarrow{{F_1}N}=£¨{x_1}+1£¬{y_1}£©•£¨{x_2}+1£¬{y_2}£©={x_1}{x_2}+{x_1}+{x_2}+1+{k^2}£¨{x_1}-1£©£¨{x_2}-1£©$=$£¨1+{k^2}£©{x_1}{x_2}+£¨1-{k^2}£©£¨{x_1}+{x_2}£©+1+{k^2}=£¨1+{k^2}£©\frac{{2{k^2}-2}}{{2{k^2}+1}}+£¨1-{k^2}£©\frac{{4{k^2}}}{{2{k^2}+1}}+1+{k^2}$=$\frac{{7{k^2}-1}}{{2{k^2}+1}}=\frac{{\frac{7}{2}£¨2{k^2}+1£©-\frac{9}{2}}}{{2{k^2}+1}}=\frac{7}{2}-\frac{{\frac{9}{2}}}{{2{k^2}+1}}$------------------------------£¨9·Ö£©
ÒòΪ1+2k2¡Ý1£¬ËùÒÔ$\overrightarrow{{F_1}M}•\overrightarrow{{F_1}N}¡Ê[-1£¬\frac{7}{2}£©$-------------------------------£¨10·Ö£©
µ±Ö±ÏßlбÂʲ»´æÔÚʱ£º$\left\{\begin{array}{l}x=1\\ \frac{x^2}{2}+{y^2}=1\end{array}\right.£¬y=¡À\frac{{\sqrt{2}}}{2}$£¬¡à$M£¨1£¬\frac{{\sqrt{2}}}{2}£©£¬N£¨1£¬-\frac{{\sqrt{2}}}{2}£©$
ËùÒÔ$\overrightarrow{{F_1}M}•\overrightarrow{{F_1}N}=£¨2£¬\frac{{\sqrt{2}}}{2}£©•£¨2£¬-\frac{{\sqrt{2}}}{2}£©=\frac{7}{2}$--------------------£¨11·Ö£©
×ÛÉÏ£º$\overrightarrow{{F_1}M}•\overrightarrow{{F_1}N}¡Ê[-1£¬\frac{7}{2}]$----------------------------------------£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄ×ÛºÏÓ¦Ó㬿¼²éת»¯Ë¼ÏëÒÔ¼°¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{10x-1£¬x¡Ü0}\\{{e}^{x}£¬x£¾0}\end{array}\right.$£¨eΪ×ÔÈ»¶ÔÊýµÄµ×£©£®Èôº¯Êýg£¨x£©=f£¨x£©-kxÇ¡ºÃÓÐÁ½¸öÁãµã£¬ÔòʵÊýkµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨1£¬e£©B£®£¨e£¬10]C£®£¨1£¬10]D£®£¨10£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÉèÈ«¼¯U=R£¬¼¯ºÏA={x|x2-3x£¾0}£¬Ôò∁UA=£¨¡¡¡¡£©
A£®[0£¬3]B£®£¨0£¬3£©C£®£¨-¡Þ£¬0£©¡È£¨3£¬+¡Þ£©D£®£¨-¡Þ£¬0]¡È[3£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖª$\overrightarrow{AB}$¡Í$\overrightarrow{AC}$£¬|$\overrightarrow{AB}$|=$\frac{1}{t}$£¬|$\overrightarrow{AC}$|=t£¬ÈôPµãÊÇ¡÷ABCËùÔÚÆ½ÃæÄÚÒ»µã£¬ÇÒ$\overrightarrow{AP}$=$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$£¬µ±t±ä»¯Ê±£¬$\overrightarrow{PB}$$•\overrightarrow{PC}$µÄ×î´óÖµµÈÓÚ£¨¡¡¡¡£©
A£®-2B£®0C£®2D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖª¼¯ºÏA={1£¬2£¬3£¬4}£¬¼¯ºÏB={3£¬4£¬5£¬6}£¬Ôò¼¯ºÏA¡ÉBÕæ×Ó¼¯µÄ¸öÊýΪ   £¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®¿Ú´üÖÐÓÐÈô¸ÉºìÇò¡¢»ÆÇòºÍÀ¶Çò£¬´ÓÖÐÃþ³öÒ»Ö»Çò£®Ãþ³öºìÇòµÄ¸ÅÂÊΪ0.48£¬Ãþ³ö»ÆÇòµÄ¸ÅÂÊΪ0.35£¬ÔòÃþ³öÀ¶ÇòµÄ¸ÅÂÊΪ0.17£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬ËıßÐÎABCDΪƽÐÐËıßÐΣ¬AC£¬BDÏཻÓÚµãO£¬µãEΪPCµÄÖе㣬OP=OC£¬PA¡ÍPD£®ÇóÖ¤£º
£¨1£©Ö±ÏßPA¡ÎÆ½ÃæBDE£»
£¨2£©Æ½ÃæBDE¡ÍÆ½ÃæPCD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Éè$\overrightarrow m=£¨{\sqrt{3}sin\frac{x}{4}£¬1}£©£¬\overrightarrow n=£¨{cos\frac{x}{4}£¬{{cos}^2}\frac{x}{4}}£©$£¬º¯Êýf£¨x£©=$\overrightarrow m•\overrightarrow n$£®
£¨1£©µ±x=¦Ðʱ£¬Çóº¯Êýf£¨x£©µÄÖµ£»
£¨2£©ÒÑÖª¡÷ABCµÄÈý¸öÄÚ½ÇA£¬B£¬CËù¶ÔÓ¦µÄ±ß·Ö±ðΪa£¬b£¬c£¬ÇÒÂú×ãbcosC+$\frac{1}{2}$c=a£¬Çó¡÷ABCµÄÄÚ½ÇBµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Èç¹û¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©Âú×㣺¶ÔÓÚÈÎÒâx1¡Ùx2£¬¶¼ÓÐx1f£¨x1£©+x2f£¨x2£©¡Ýx1f£¨x2£©+x2f£¨x1£©£¬Ôò³Æf£¨x£©Îª¡°Hº¯Êý¡±£®¸ø³öÏÂÁк¯Êý£º
¢Ùy=-x3+x+l£»
¢Úy=3x-2£¨sinx-cosx£©£»
¢Ûy=l-ex£»
¢Üf£¨x£©=$\left\{\begin{array}{l}{lnx£¨x¡Ý1£©}\\{0£¨x£¼1£©}\end{array}\right.$£¬
ÆäÖС°Hº¯Êý¡±µÄ¸öÊýÓУ¨¡¡¡¡£©
A£®3¸öB£®2¸öC£®1¸öD£®0¸ö

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸