·ÖÎö £¨¢ñ£© ÉèF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬ÀûÓÃÒÑÖªÌõ¼þÁгö·½³Ì×飬Çó½â¼´¿É£®
£¨¢ò£©µ±Ö±ÏßlбÂÊ´æÔÚʱ£ºÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬Ö±ÏßlΪ£ºy=k£¨x-1£©£¬´úÈë$\frac{x^2}{2}+{y^2}=1$ÀûÓÃΤ´ï¶¨Àí£¬ÍÆ³ö$\overrightarrow{{F_1}M}•\overrightarrow{{F_1}N}¡Ê[-1£¬\frac{7}{2}£©$£®µ±Ö±ÏßlбÂʲ»´æÔÚʱ£º$\left\{\begin{array}{l}x=1\\ \frac{x^2}{2}+{y^2}=1\end{array}\right.£¬y=¡À\frac{{\sqrt{2}}}{2}$£¬ÍƳö$\overrightarrow{{F_1}M}•\overrightarrow{{F_1}N}=£¨2£¬\frac{{\sqrt{2}}}{2}£©•£¨2£¬-\frac{{\sqrt{2}}}{2}£©=\frac{7}{2}$£®
½â´ð £¨±¾Ð¡ÌâÂú·Ö12·Ö£©
½â£º£¨¢ñ£© ÉèF1£¨-c£¬0£©£¬F2£¨c£¬0£©
¡à$\left\{\begin{array}{l}\frac{c}{a}=\frac{{\sqrt{2}}}{2}\\ a-c=\sqrt{2}-1\end{array}\right.£¬\left\{\begin{array}{l}a=\sqrt{2}\\ c=1\end{array}\right.$-------------£¨2·Ö£©
¡àb2=a2-c2=1£¬¡à$\frac{x^2}{2}+{y^2}=1$-------------------------------£¨4·Ö£©
£¨¢ò£©µ±Ö±ÏßlбÂÊ´æÔÚʱ£ºÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬Ö±ÏßlΪ£ºy=k£¨x-1£©£¬´úÈë$\frac{x^2}{2}+{y^2}=1$
µÃ£º$\frac{x^2}{2}+{k^2}{£¨x-1£©^2}=1£¬ÕûÀíµÃ£º$£¨1+2k2£©x2-4k2x+2k2-2=0£¬ÓÉÌâÒâ¡÷£¾0
ËùÒÔ${x_1}+{x_2}=\frac{{4{k^2}}}{{2{k^2}+1}}£¬{x_1}{x_2}=\frac{{2{k^2}-2}}{{2{k^2}+1}}$£¬--------------------------------------£¨7·Ö£©
ËùÒÔ$\overrightarrow{{F_1}M}•\overrightarrow{{F_1}N}=£¨{x_1}+1£¬{y_1}£©•£¨{x_2}+1£¬{y_2}£©={x_1}{x_2}+{x_1}+{x_2}+1+{k^2}£¨{x_1}-1£©£¨{x_2}-1£©$=$£¨1+{k^2}£©{x_1}{x_2}+£¨1-{k^2}£©£¨{x_1}+{x_2}£©+1+{k^2}=£¨1+{k^2}£©\frac{{2{k^2}-2}}{{2{k^2}+1}}+£¨1-{k^2}£©\frac{{4{k^2}}}{{2{k^2}+1}}+1+{k^2}$=$\frac{{7{k^2}-1}}{{2{k^2}+1}}=\frac{{\frac{7}{2}£¨2{k^2}+1£©-\frac{9}{2}}}{{2{k^2}+1}}=\frac{7}{2}-\frac{{\frac{9}{2}}}{{2{k^2}+1}}$------------------------------£¨9·Ö£©
ÒòΪ1+2k2¡Ý1£¬ËùÒÔ$\overrightarrow{{F_1}M}•\overrightarrow{{F_1}N}¡Ê[-1£¬\frac{7}{2}£©$-------------------------------£¨10·Ö£©
µ±Ö±ÏßlбÂʲ»´æÔÚʱ£º$\left\{\begin{array}{l}x=1\\ \frac{x^2}{2}+{y^2}=1\end{array}\right.£¬y=¡À\frac{{\sqrt{2}}}{2}$£¬¡à$M£¨1£¬\frac{{\sqrt{2}}}{2}£©£¬N£¨1£¬-\frac{{\sqrt{2}}}{2}£©$
ËùÒÔ$\overrightarrow{{F_1}M}•\overrightarrow{{F_1}N}=£¨2£¬\frac{{\sqrt{2}}}{2}£©•£¨2£¬-\frac{{\sqrt{2}}}{2}£©=\frac{7}{2}$--------------------£¨11·Ö£©
×ÛÉÏ£º$\overrightarrow{{F_1}M}•\overrightarrow{{F_1}N}¡Ê[-1£¬\frac{7}{2}]$----------------------------------------£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄ×ÛºÏÓ¦Ó㬿¼²éת»¯Ë¼ÏëÒÔ¼°¼ÆËãÄÜÁ¦£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨1£¬e£© | B£® | £¨e£¬10] | C£® | £¨1£¬10] | D£® | £¨10£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | [0£¬3] | B£® | £¨0£¬3£© | C£® | £¨-¡Þ£¬0£©¡È£¨3£¬+¡Þ£© | D£® | £¨-¡Þ£¬0]¡È[3£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -2 | B£® | 0 | C£® | 2 | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 3¸ö | B£® | 2¸ö | C£® | 1¸ö | D£® | 0¸ö |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com