精英家教网 > 高中数学 > 题目详情

【题目】如图,在矩形纸片中,,在线段上取一点,沿着过点的直线将矩形右下角折起,使得右下角顶点恰好落在矩形的左边边上.设折痕所在直线与交于点,记折痕的长度为,翻折角

(1)探求的函数关系,推导出用表示的函数表达式;

(2)设的长为,求的取值范围;

(3)确定点在何处时,翻折后重叠部分的图形面积最小.

【答案】(1);(2);(3)当时,翻折后重叠部分的图形面积最小

【解析】

(1)由图可知的函数关系式为 =,再求函数定义域的范围即可;

(2)由三角函数的性质求函数在区间上的值域即可;

(3)由均值不等式求函数的最值,由取等的条件求出的值即可.

解:(1)设顶点翻折到边上的点为,由题意可得,

,因为

所以=

的函数关系式为 =

由题意有,首先利用,可知

解得,所以

又由,可知,即

的函数关系式为 =

(2)

所以

的取值范围为

(3)

(当且仅当=时取等号,

故当时,取最小值

时,取最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为2,过点.

1)求椭圆的标准方程;

2)设椭圆的右焦点为F,定点,过点F且斜率不为零的直线l与椭圆交于AB两点,以线段AP为直径的圆与直线的另一个交点为Q,证明:直线BQ恒过一定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(k+)lnx+,k∈[4,+∞),曲线y=f(x)上总存在两点M(x1,y1),N(x2,y2),使曲线y=f(x)在M,N两点处的切线互相平行,则x1+x2的取值范围为

A. ,+∞) B. ,+∞) C. [,+∞) D. [,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正四面体的表面积为为棱的中点,球为该正四面体的外接球,则过点的平面被球所截得的截面面积的最小值为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(k+)lnx+,k∈[4,+∞),曲线y=f(x)上总存在两点M(x1,y1),N(x2,y2),使曲线y=f(x)在M,N两点处的切线互相平行,则x1+x2的取值范围为

A. ,+∞) B. ,+∞) C. [,+∞) D. [,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的极值;

(2)若函数有两个零点,求实数取值范围;

(3)若当时,恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点在以为直径的上运动,平面,且,点分别是的中点.

(1)求证:

(2)若,求点平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省高考改革实施方案指出:该省高考考生总成绩将由语文、数学、外语3门统一高考成绩和学生自主选择的学业水平等级性考试科目共同构成.该省教育厅为了解正就读高中的学生家长对高考改革方案所持的赞成态度,随机从中抽取了100名城乡家长作为样本进行调查,调查结果显示样本中有25人持不赞成意见.下面是根据样本的调查结果绘制的等高条形图.

(1)根据已知条件与等高条形图完成下面的2×2列联表,并判断我们能否有95%的把握认为“赞成高考改革方案与城乡户口有关”?

(2)利用分层抽样从持“不赞成”意见家长中抽取5名参加学校交流活动,从中选派2名家长发言,求恰好有1名城镇居民的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙、丁四人进行一项益智游戏,方法如下:第一步:先由四人看着平面直角坐标系中方格内的16个棋子(如图所示),甲从中记下某个棋子的坐标;第二步:甲分别告诉其他三人:告诉乙棋子的横坐标.告诉丙棋子的纵坐标,告诉丁棋子的横坐标与纵坐标相等;第三步:由乙、丙、丁依次回答.对话如下:“乙先说我无法确定.丙接着说我也无法确定.最后丁说我知道”.则甲记下的棋子的坐标为_____.

查看答案和解析>>

同步练习册答案