精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的焦距为2,过点.

1)求椭圆的标准方程;

2)设椭圆的右焦点为F,定点,过点F且斜率不为零的直线l与椭圆交于AB两点,以线段AP为直径的圆与直线的另一个交点为Q,证明:直线BQ恒过一定点,并求出该定点的坐标.

【答案】1;(2)证明见解析,.

【解析】

1)根据题意列方程组,求解,即可.

2)设因为直线的斜率不为零,令的方程为:,与椭圆方程联立,得到,由题意可知,,则,确定的方程,由椭圆的对称性,则定点必在轴上,所以令,求解,即可.

1)由题知 解得

所以椭圆的方程为

2)设因为直线的斜率不为零,令的方程为:

因为以为直径的圆与直线的另一个交点为,所以,则

,故的方程为:

由椭圆的对称性,则定点必在轴上,所以令,则

所以

故直线恒过定点,且定点为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直四棱柱的底面ABCD是菱形,E上任意一点.

1)求证:平面平面

2)设,当E的中点时,求点E到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数.

(Ⅰ)当时,对于任意的,求的最小值;

(Ⅱ)若存在,使,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,已知,平面平面的中点,连接.

(1)求证:平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】环保部门要对所有的新车模型进行广泛测试,以确定它的行车里程的等级,右表是对 100 辆新车模型在一个耗油单位内行车里程(单位:公里)的测试结果.

(Ⅰ)做出上述测试结果的频率分布直方图,并指出其中位数落在哪一组;

(Ⅱ)用分层抽样的方法从行车里程在区间[38,40)与[40,42)的新车模型中任取5辆,并从这5辆中随机抽取2辆,求其中恰有一个新车模型行车里程在[40,42)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱中,底面是矩形,交于点.

(1)证明:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求的极值;

(2)若,都有成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面为菱形,.

(1)证明:

(2)若,求二面角的余弦值的绝对值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形纸片中,,在线段上取一点,沿着过点的直线将矩形右下角折起,使得右下角顶点恰好落在矩形的左边边上.设折痕所在直线与交于点,记折痕的长度为,翻折角

(1)探求的函数关系,推导出用表示的函数表达式;

(2)设的长为,求的取值范围;

(3)确定点在何处时,翻折后重叠部分的图形面积最小.

查看答案和解析>>

同步练习册答案