精英家教网 > 高中数学 > 题目详情
14.已知{an}是等差数列,其中a1=25,a4=16.求
(1)求{an}的通项公式;  
(2){an}的前15项和S15的值.

分析 (1)利用等差数列的通项公式即可得出.
(2)利用等差数列的求和公式即可得出.

解答 解:(1)设等差数列{an}的公差为d,∵a1=25,a4=16.
∴25+3d=16,解得d=-3.
∴an=25-3(n-1)=28-3n.
(2)S15=$\frac{15×(25+28-3×15)}{2}$=60.

点评 本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.用秦九韶算法计算多项式f(x)=3x5+2x3-8x+5在x=2时的值时,V4的值为48.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设a>1,函数f(x)=logax定义域为[b,3b],值域为[c,c+2],则a=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=sin(ωx+φ)-b(ω>0,0<φ<π)的图象两相邻对称轴之间的距离是$\frac{π}{2}$,若将f(x)的图象先向右平移$\frac{π}{6}$个单位,再向上平移$\sqrt{3}$个单位,所得函数g(x)为奇函数.
(1)求f(x)的解析式;
(2)求f(x)的对称轴及单调增区间;
(3)若对任意x∈[0,$\frac{π}{3}$],f2(x)-(2+m)f(x)+2+m≤0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设点P(x,y) 在函数y=4-2x的图象上运动,则9x+3y的最小值为(  )
A.9B.12C.18D.22

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知命题p:?x>0,都有(x+1)ex>1.则¬p为(  )
A.?x≤0,总有(x+1)ex≤1B.?x0>0,使得(x0+1)e${\;}^{{x}_{0}}$≤1
C.?x0≤0,使得(x0+1)e${\;}^{{x}_{0}}$≤1D.?x>0,总有(x+1)ex≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列函数中,最小正周期为π的是(  )
A.y=|sinx|B.y=sinxC.sin3xD.y=cos4x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若函数y=f(x)对任意的x,y∈R,恒有f(x+y)=f(x)+f(y).当x>0时,恒有f(x)<0.
(1)判断函数f(x)的奇偶性,并证明你的结论;
(2)若f(2)=1,解不等式f(-x2)+2f(x)+4<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设命题p:关于x的不等式ax<1的解集是{x|x<0};
命题q:?x0∈R,ax02+4x0+a≤0.若¬p∨q为假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案