精英家教网 > 高中数学 > 题目详情
11.已知实数a,b,c满足a2+b2+c2=1,则ab+bc+ca的取值范围是(  )
A.(-∞,1]B.[-1,1]C.[-$\frac{1}{2}$,1]D.[-$\frac{1}{4}$,1]

分析 由基本不等式易得ab+bc+ca≤1,再由a2+b2+c2+2(ab+bc+ca)=(a+b+c)2≥0可得ab+bc+ca≥-$\frac{1}{2}$,综合可得答案.

解答 解:∵a2+b2≥2ab,∴ab≤$\frac{1}{2}$(a2+b2),①
当且仅当a=b时取等号,
同理可得bc≤$\frac{1}{2}$(b2+c2),②,ac≤$\frac{1}{2}$(a2+c2),③
①+②+③可得ab+bc+ca≤$\frac{1}{2}$(2a2+2b2+2c2
∵a2+b2+c2=1,∴$\frac{1}{2}$(2a2+2b2+2c2)=1,
∴ab+bc+ca≤1,当且仅当a=b=c时取等号,
又a2+b2+c2+2(ab+bc+ca)=(a+b+c)2≥0,
∴1+2(ab+bc+ca)≥0,
∴ab+bc+ca≥-$\frac{1}{2}$
故选:C.

点评 本题考查基本不等式求最值,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在区间[-2,4]上随机取一个点x,若x满足x2≤m的概率为$\frac{1}{4}$,则m=$\frac{9}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若二项式(x+$\frac{1}{\sqrt{x}}$)n展开式中只有第四项的系数最大,则这个展开式中任取一项为有理项的概率是$\frac{4}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设x,y是正实数,且x+y=3,则$\frac{{y}^{2}}{x+1}$+$\frac{{x}^{2}}{y+1}$的最小值是$\frac{9}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.“斐波那契数列”是数学史上一个著名数列,在斐波那契数列{an}中,a1=1,a2=1,an+2=an+1+an(n∈N*),则a7=13;若a2017=m,则数列{an}的前2015项和是m-1(用m表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2+|x+1-a|,其中a为实常数.
(Ⅰ)判断f(x)的奇偶性;
(Ⅱ)若对任意x∈R,使不等式f(x)>2|x-a|恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.从4名男生和6名女生中各选2人参加跳绳比赛,则男生甲和女生乙至少有一个被选中的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.定义点P对应到点Q的对应法则:$f:P(m,n)→Q(-\sqrt{n},-\frac{{\sqrt{m}}}{2})$,(m≥0,n≥0),则按定义的对应法则f,当点P在线段AB上从点A(4,0)开始运动到点B(0,4)时,可得到P的对应点Q的相应轨迹,记为曲线E,则曲线E上的点与线段AB上的点之间的最小距离为$\frac{5\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某锥体的三视图如图所示,则该几何体的体积为$\frac{8}{3}$,表面积为$6+2\sqrt{3}+4\sqrt{2}$.

查看答案和解析>>

同步练习册答案