精英家教网 > 高中数学 > 题目详情
1.函数f(x)=x+lnx的零点个数是(  )
A.3B.2C.1D.0

分析 根据一次函数的对数函数的单调性,结合增函数的性质,可判断出函数f(x)=lnx+x在(0,+∞)上为增函数,故函数f(x)至多有一个零点,进而根据f($\frac{1}{e}$)•f(1)<0,可得函数f(x)在区间($\frac{1}{e}$,1)上有一个零点.

解答 解:∵y=lnx与y=x均在(0,+∞)上为增函数
故函数f(x)=lnx+x在(0,+∞)上为增函数
故函数f(x)至多有一个零点
又∵f($\frac{1}{e}$)=$\frac{1}{e}$-1<0,f(1)=1>0
∴f($\frac{1}{e}$)•f(1)<0,
即函数f(x)在区间($\frac{1}{e}$,1)上有一个零点
故选:C.

点评 本题考查的知识点是根的存在性及根的个数判断,熟练掌握零点存在定理是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.求证:$\frac{π}{2}$是函数f(x)=|sin(2x+$\frac{π}{8}$)|的一个周期.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.数列{an}满足${a_{n+1}}=\frac{{2{a_n}-9}}{{{a_n}-4}}({n∈{N^+}})$,且a1=2.
(1)写出a2,a3,a4的值;
(2)归纳猜想数列{an}的通项公式,并用数学归纳法证明;
(3)设${b_n}=({{a_{n+1}}-3})({{a_n}-3})({n∈{N^+}})$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=3x,x∈[-1,1],函数g(x)=[f(x)]2-2af(x)+3.
(Ⅰ)当a=0时,求函数g(x)的值域;
(Ⅱ)若函数g(x)的最小值为h(a),求h(a)的表达式;
(Ⅲ)是否存在实数m,n同时满足下列两个条件:①m>n>3;②当h(a)的定义域为[n,m]时,值域为[n2,m2]?若存在,求出m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.定义A*B、B*C、C*D、D*B分别对应下列图形,

那么下面的图形中,可以表示A*D,A*C的分别是(  )
A.(1)、(2)B.(2)、(3)C.(2)、(4)D.(1)、(4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.给出以下结论:
①有两个侧面是矩形的棱柱是直棱柱;
②有两个相邻侧面是矩形的棱柱是正棱柱;
③各侧面都是正方形的棱柱一定是正棱柱;
④一个三棱锥四个面可以都为直角三角形;
⑤长方体一条对角线与同一个顶点的三条棱所成的角为α,β,γ,则cos2α+cos2β+cos2γ=1.
其中正确的是④⑤(将正确结论的序号全填上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C上的点到直线x=-2的距离比它到点F(1,0)的距离大1.
(Ⅰ)求曲线C的方程;
(Ⅱ)过点F(1,0)做斜率为k的直线交曲线C于M,N两点,求证:$\frac{1}{|MF|}$+$\frac{1}{|NF|}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.“x≤2或x≥5”是“x2-7x+10>0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某学校为了解三年级、六年级、九年级这三个年级学生的视力情况,拟从中抽取一定比例的学生进行调杳,则最合理的抽样方法是(  )
A.抽签法B.系统抽样法C.分层抽样法D.随机数法

查看答案和解析>>

同步练习册答案