精英家教网 > 高中数学 > 题目详情
6.给出以下结论:
①有两个侧面是矩形的棱柱是直棱柱;
②有两个相邻侧面是矩形的棱柱是正棱柱;
③各侧面都是正方形的棱柱一定是正棱柱;
④一个三棱锥四个面可以都为直角三角形;
⑤长方体一条对角线与同一个顶点的三条棱所成的角为α,β,γ,则cos2α+cos2β+cos2γ=1.
其中正确的是④⑤(将正确结论的序号全填上)

分析 在①中,如果对面是矩形斜棱柱也可以做到;在②中,有两个相邻侧面是矩形的棱柱是直棱柱;在③中,底面一定是菱形,不一定是正方形;在④中,一个三棱锥四个面可以都为直角三角形;在⑤中,利用面对角线的性质求解.

解答 解:在①中,必须是相邻的两个侧面是矩形的棱柱才是直棱柱,
如果对面是矩形斜棱柱也可以做到,故①错误;
在②中,有两个相邻侧面是矩形的棱柱是直棱柱,不一定是正棱柱,故②错误;
在③中,各侧面都是正方形时,底面的四条边相等,
底面一定是菱形,不一定是正方形,
正棱柱的底面必须是正方形,故③错误;
在④中,一个三棱锥四个面可以都为直角三角形,
如右图,PA⊥平面ABC,AB⊥BC,
则三棱锥P-ABC的四个面都是直角三角形,故④正确;
在⑤中,设对角线B1D与长方体的棱AD、DC、D1D所成的角分别为α、β、γ,
连结AB1、CB1,D1B1,则△B1DA、△B1DC、△B1DD1都是直角三角形.
∵cosα=$\frac{DA}{D{B}_{1}}$,cosβ=$\frac{DC}{D{B}_{1}}$,cosγ=$\frac{D{D}_{1}}{D{B}_{1}}$,
cos2α+cos2β+cos2γ=$\frac{D{A}^{2}+D{C}^{2}+D{{D}_{1}}^{2}}{D{B}^{2}}$=1.故⑤正确.
故答案为:④⑤.

点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设函数y=f(cosx)是可导函数,则y′等于(  )
A.f′(sinx)B.-f′(sinx)C.f′(cosx)sinxD.-f′(cosx)sinx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知定义域为R的偶函数f(x)的图象关于直线x=4对称,当x∈[0,4]时,f(x)可导且满足f′(x)>2f(x),则有(  )
A.e2f(-15)<f(-6),e2f(-11)<f(-20)B.e2f(-15)>f(-6),e2f(-11)>f(-20)
C.e2f(-15)<f(-6),e2f(-11)>f(-20)D.e2f(-15)>f(-6),e2f(-11)<f(-20)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{\begin{array}{l}{m,x>m}\\{{x}^{2}+4x+2,x≤m}\end{array}\right.$,若函数F(x)=f(x)-x只有一个零点,则实数m的取值范围是-2≤m<-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=x+lnx的零点个数是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设Sn为等差数列{an}的前n项和,若S3=3,S6=24,则a9=15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,ABCD是边长为a的正方形,PA⊥平面ABCD.
(1)若PA=AB,点E是PC的中点,求直线AE与平面PCD所成角的正弦值;
(2)若BE⊥PC且交点为E,BE=$\frac{\sqrt{6}}{3}$a,G为CD的中点,线段AB上是否存在点F,使得EF∥平面PAG?若存在,求AF的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列结论判断正确的是(  )
A.任意三点确定一个平面
B.任意四点确定一个平面
C.三条平行直线最多确定一个平面
D.正方体ABCD-A1B1C1D1中,AB与CC1异面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图的频率分
布直方图.
(1)求图中实数a的值;
(2)若该校高一年级共有学生1000人,试估计该校高一年级期中考试数学成绩不低于60分的人数.
(3)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,试用列举法求这2名学生的数学成绩之差的绝对值大于10的槪率.

查看答案和解析>>

同步练习册答案