精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=$\left\{\begin{array}{l}{m,x>m}\\{{x}^{2}+4x+2,x≤m}\end{array}\right.$,若函数F(x)=f(x)-x只有一个零点,则实数m的取值范围是-2≤m<-1.

分析 令x2+4x+2=x,可得x=-2或-1,利用函数F(x)=f(x)-x只有一个零点,即可求出实数m的取值范围.

解答 解:由题意,令x2+4x+2=x,∴x2+3x+2=0,可得x=-2或-1,
∵函数F(x)=f(x)-x只有一个零点,
∴实数m的取值范围是-2≤m<-1.
故答案为:-2≤m<-1.

点评 本题考查的知识点是分段函数的应用,函数的零点,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.从集合M={1,2,3,…,9},任取相异两元素作为a,b,可得到多少个焦点在x轴椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.节能环保日益受到人们的重视,水污染治理也已成为“十三五”规划的重要议题.某地有三家工厂,分别位于矩形ABCD的两个顶点A、B及CD的中点P处,AB=30km,BC=15km,为了处理三家工厂的污水,现要在该矩形区域上(含边界),且与A、B等距离的一点O处,建造一个污水处理厂,并铺设三条排污管道AO、BO、PO.设∠BAO=x(弧度),排污管道的总长度为ykm.
(1)将y表示为x的函数;
(2)试确定O点的位置,使铺设的排污管道的总长度最短,并求总长度的最短公里数(精确到0.01km).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.直线a、b是异面直线,α、β是平面,若a?α,b?β,α∩β=c,则下列说法正确的是(  )
A.c至少与a、b中的一条相交B.c至多与a、b中的一条相交
C.c与a、b都相交D.c与a、b都不相交

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=3x,x∈[-1,1],函数g(x)=[f(x)]2-2af(x)+3.
(Ⅰ)当a=0时,求函数g(x)的值域;
(Ⅱ)若函数g(x)的最小值为h(a),求h(a)的表达式;
(Ⅲ)是否存在实数m,n同时满足下列两个条件:①m>n>3;②当h(a)的定义域为[n,m]时,值域为[n2,m2]?若存在,求出m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线(1-2a)x-2y+3=0与直线3x+y+2a=0垂直,则实数a的值为(  )
A.$-\frac{5}{2}$B.$\frac{1}{6}$C.$\frac{5}{6}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.给出以下结论:
①有两个侧面是矩形的棱柱是直棱柱;
②有两个相邻侧面是矩形的棱柱是正棱柱;
③各侧面都是正方形的棱柱一定是正棱柱;
④一个三棱锥四个面可以都为直角三角形;
⑤长方体一条对角线与同一个顶点的三条棱所成的角为α,β,γ,则cos2α+cos2β+cos2γ=1.
其中正确的是④⑤(将正确结论的序号全填上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列命题为真命题的是(  )
A.已知x,y∈R,则$\left\{\begin{array}{l}{x>1}\\{y>2}\end{array}\right.$是$\left\{\begin{array}{l}{x+y>3}\\{xy>2}\end{array}\right.$的充要条件
B.当0<x≤2时,函数y=x-$\frac{1}{x}$无最大值
C.?a,b∈R,$\frac{a+b}{2}≥\sqrt{ab}$
D.?x∈R,sinx+cosx=$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.“m>0”是“x2+x+m=0无实根”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案