精英家教网 > 高中数学 > 题目详情
19.直线(1-2a)x-2y+3=0与直线3x+y+2a=0垂直,则实数a的值为(  )
A.$-\frac{5}{2}$B.$\frac{1}{6}$C.$\frac{5}{6}$D.$\frac{7}{2}$

分析 由题意可得3(1-2a)-2=0,解方程可得.

解答 解:∵直线(1-2a)x-2y+3=0与直线3x+y+2a=0垂直,
∴3(1-2a)-2=0,
∴$a=\frac{1}{6}$,
故选:B.

点评 本题考查直线的一般式方程和直线的垂直关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.$\frac{2cos20°+2sin20°-1}{2cos20°-2sin20°-1}$•tan25°的值为(  )
A.2-$\sqrt{3}$B.$\sqrt{3}$-$\sqrt{2}$C.$\sqrt{2}$+$\sqrt{3}$D.2+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2ax2+bx-a+1,其中a∈R,b∈R.
(Ⅰ)当a=b=1时,f(x)的零点为0,-$\frac{1}{2}$;
(Ⅱ)当$b=\frac{4}{3}$时,如果存在x0∈R,使得f(x0)<0,试求a的取值范围;
(Ⅲ)如果对于任意x∈[-1,1],都有f(x)≥0成立,试求a+b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线l1:2x-y=0和直线l2:3x-y-1=0,它们的交点为A,分别求满足下列条件的直线方程.
(Ⅰ)若直线m过点A且与直线3x+y-2=0平行,求直线m的方程;
(Ⅱ)若点A关于直线x-y+2=0的对称点为点A′,直线n经过A′且与直线m垂直,求直线n的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{\begin{array}{l}{m,x>m}\\{{x}^{2}+4x+2,x≤m}\end{array}\right.$,若函数F(x)=f(x)-x只有一个零点,则实数m的取值范围是-2≤m<-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)的定义域为R,且f(x)不为常值函数,有以下命题:
①函数g(x)=f(x)+f(-x)一定是偶函数;
②若对任意x∈R都有f(x)+f(2-x)=0,则f(x)是以2为周期的周期函数;
③若f(x)是奇函数,且对于任意x∈R,都有f(x)+f(2+x)=0,则f(x)的图象的对称轴方程为x=2n+1(n∈Z);
④对于任意的x1,x2∈R,且x1≠x2,若$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0恒成立,则f(x)为R上的增函数,
其中所有正确命题的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设Sn为等差数列{an}的前n项和,若S3=3,S6=24,则a9=15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,a,b,c是角A,B,C的对边,A=$\frac{π}{3}$,C=$\frac{5π}{12}$,a=2$\sqrt{6}$,则b等于(  )
A.4B.2$\sqrt{3}$C.3D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知在等差数列{an}中,a2=6,a4=14,则数列{an}前10项的和为(  )
A.100B.400C.380D.200

查看答案和解析>>

同步练习册答案