分析 根据函数奇偶性的定义,可判断①;根据已知分析函数的对称性,可判断②;根据已知分析出函数的周期性和对称性,可判断③;根据已知分析出函数的单调性,可判断④
解答 解:∵g(-x)=f(-x)+f(x)=g(x),故函数g(x)=f(x)+f(-x)一定是偶函数,故①正确;
②若对任意x∈R都有f(x)+f(2-x)=0,则f(x)的图象关于点(1,0)对称,但不一定是周期函数,故错误;
③若f(x)是奇函数,且对于任意x∈R,都有f(x)+f(2+x)=0,则函数的周期为4,则f(x)的图象的对称轴方程为x=2n+1(n∈Z),故正确;
④对于任意的x1,x2∈R,且x1≠x2,若$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0恒成立,则f(x)为R上的增函数,故正确,
故答案为:①③④
点评 本题以命题的真假判断与应用为载体,考查了函数的奇偶性,函数的对称性,函数的周期性和函数的单调性,是函数图象和性质的综合应用,难度中档.
科目:高中数学 来源: 题型:选择题
| A. | 2010π | B. | -$\frac{π}{8}$ | C. | -$\frac{π}{4}$ | D. | -$\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,0) | B. | $(0,\frac{1}{2})$ | C. | $(\frac{1}{2},1)$ | D. | (1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{5}{2}$ | B. | $\frac{1}{6}$ | C. | $\frac{5}{6}$ | D. | $\frac{7}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=3-x | B. | f(x)=-$\frac{1}{x+1}$ | C. | f(x)=x2-3x | D. | f(x)=-|x| |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com