精英家教网 > 高中数学 > 题目详情
13.在△ABC中,若A=$\frac{2π}{3}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=-2,则△ABC的面积S=$\sqrt{3}$.

分析 先根据向量的数量积公式求出|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|=4,再根据三角形的面积公式计算即可.

解答 解:∵△ABC中,A=$\frac{2π}{3}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=-2,
∴$\overrightarrow{AB}$•$\overrightarrow{AC}$=|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|cos$\frac{2π}{3}$=-2,
∴|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|=4,
∴S=$\frac{1}{2}$|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|sinA=$\frac{1}{2}$×4×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$
故答案为:$\sqrt{3}$.

点评 本题考查了向量的数量积的运算和三角形的面积公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若数列{an}满足a2-a1<a3-a2<a4-a3<…an+1-an<…,则称数列{an}为“上进数列”,若数列{an}是上进数列,且其通项an=λ•2n-n2(n∈N*,λ≠0),则λ的取值范围是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)的定义域为R,且f(x)不为常值函数,有以下命题:
①函数g(x)=f(x)+f(-x)一定是偶函数;
②若对任意x∈R都有f(x)+f(2-x)=0,则f(x)是以2为周期的周期函数;
③若f(x)是奇函数,且对于任意x∈R,都有f(x)+f(2+x)=0,则f(x)的图象的对称轴方程为x=2n+1(n∈Z);
④对于任意的x1,x2∈R,且x1≠x2,若$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0恒成立,则f(x)为R上的增函数,
其中所有正确命题的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知命题p:x2+x-2>0;命题q:x>m.若¬q的一个充分不必要条件是¬p,则实数m的取值范围是m≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,a,b,c是角A,B,C的对边,A=$\frac{π}{3}$,C=$\frac{5π}{12}$,a=2$\sqrt{6}$,则b等于(  )
A.4B.2$\sqrt{3}$C.3D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.直线l与直线3x-y+2=0关于y轴对称,则直线l的方程为3x+y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知三棱锥P-ABC的所有棱长都相等,且AB=2,点O在棱锥的高PH所在的直线上,PA、PB的中点分贝为E、F,满足$\overrightarrow{OP}$=m$\overrightarrow{OE}$+n$\overrightarrow{OF}$+k$\overrightarrow{OC}$,m,n,k∈R,且k∈[-$\frac{1}{7}$,-$\frac{1}{13}$],则|$\overrightarrow{OP}$|的取值范围是[$\frac{\sqrt{6}}{9}$,$\frac{\sqrt{6}}{6}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{{a}^{x},a>0,x≤0}\end{array}\right.$若f(f($\frac{1}{4}$))=4,则a=(  )
A.$\frac{1}{4}$B.4C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若“任意$x∈[0,\frac{π}{4}),tanx<m$”是真命题,则实数m的取值范围是m≥1.

查看答案和解析>>

同步练习册答案